# ROYAL SOCIET OF CHEMISTR

## Journal of Materials Chemistry A



### **Electronic supplementary information**

## Ionic Conductivity Promotion of Polymer Electrolyte with Ionic Liquid Grafted Oxides for All-Solid-State Lithium-Sulfur Batteries

Ouwei Sheng,<sup>‡</sup><sup>a</sup> Chengbin Jin,<sup>‡</sup><sup>a</sup> Jianmin Luo,<sup>a</sup> Huadong Yuan,<sup>a</sup> Cong Fang,<sup>a</sup> Hui Huang,<sup>a</sup> Yongping Gan,<sup>a</sup> Jun Zhang,<sup>a</sup> Yang Xia,<sup>a</sup> Chu Liang,<sup>a</sup> Wenkui Zhang,<sup>a</sup> and Xinyong Tao<sup>a,\*</sup>



Fig. S1 Schematic illustration of the fabrication process of IL@NPs based on ion exchange method.



Fig. S2 SEM morphology of (a) IL@SiO<sub>2</sub>, (b) IL@TiO<sub>2</sub>, (c) IL@ZrO<sub>2</sub>.



**Fig. S3** Flammability tests of (a-c) 1 M LiTFSI and 0.1M LiNO<sub>3</sub> dissolved in a mixture of 1,3dioxolane (DOL) and dimethoxymethane (DME) (v/v=1:1) and (d-f) PEO-Li-Zr electrolytes using a burning torch.



Fig. S4 XPS of (a) C1s and (b) O1s respectively.



Fig. S5 EDX full elements analysis of N-CNs.



Fig. S6 TG curves of N-CNs/S materials.



**Fig. S7** The discharge/charge curves of the first three cycles for the battery based on PEO-Li, PEO-Li-Si, PEO-Li-Ti, PEO-Li-Zr electrolytes at 50 °C.



**Fig.S8** Discharge capacity and Coulombic efficiencies of PEO-Li, PEO-Li-Si, PEO-Li-Ti battery at 50 °C.



Fig. S9 Electrochemical impedance spectroscopy (EIS) of PEO-Li-Si, PEO-Li-Ti battery at 50 °C.



**Fig. S10** The discharge/charge curves of the first three cycles for the battery based on PEO-Li, PEO-Li-Si, PEO-Li-Ti, PEO-Li-Zr electrolytes at 37 °C.



**Fig. S11** Discharge capacity and Coulombic efficiencies of PEO-Li, PEO-Li-Si, PEO-Li-Ti battery at 37 °C.



**Fig. S12** Electrochemical impedance spectroscopy (EIS) of PEO-Li-Si, PEO-Li-Ti battery at 37 °C.



**Fig. S13** Typical discharge/charge curves of Carbon black/S cathode and N-CNs/S cathode using PEO-Li-Zr electrolyte at 50 °C. b) Discharge/charge capacity and Coulombic efficiencies of the battery with Carbon black/S cathode or N-CNs/S cathode at 50 °C. c) Typical discharge/charge curves of Carbon black/S cathode and N-CNs/S cathode using PEO-Li-Zr electrolyte at 37 °C. d) Discharge/charge capacity and coulombic efficiencies of the battery with Carbon black/S cathode or N-CNs/S cathode at 37 °C.

#### ARTICLE

| Electrolyte                           | Cathode/                | Working<br>Voltage (V) | Working<br>Temp(°C) | Capacity (mAh g <sup>-1</sup> ) | Year | Ref |
|---------------------------------------|-------------------------|------------------------|---------------------|---------------------------------|------|-----|
|                                       | Anode                   |                        |                     |                                 |      |     |
| PEO-LITFSI                            | LiFePO <sub>4</sub> /Li | 3.0-4.0                | 40                  | 160 (After 100cycles)           | 2014 | [1] |
| -Pyr <sub>14</sub> TFSI               |                         |                        |                     |                                 |      |     |
| PEO-LITFSI                            | LiFePO <sub>4</sub> /Li | 2.9-3.8                | 65                  | 120 (After 100cycles)           | 2016 | [2] |
| -HMOP                                 |                         |                        |                     |                                 |      |     |
| PEO-LiClO <sub>4</sub>                | LiFePO <sub>4</sub> /Li | 2.5-4.1                | 90                  | 105 (After 80cycles)            | 2016 | [3] |
| -SiO <sub>2</sub>                     |                         |                        |                     |                                 |      |     |
| PEO-LiClO <sub>4</sub>                | LiFePO <sub>4</sub> /Li | 2.6-3.8                | 60                  | 105 (After 200cycles)           | 2016 | [4] |
| -LLZTO                                |                         |                        |                     |                                 |      |     |
| PEO-LiCF <sub>3</sub> SO <sub>3</sub> | Li <sub>2</sub> S-C /Li | 1.5-3.2                | 70                  | 600 (After 50cycles)            | 2010 | [5] |
| $-Li_2S-ZrO_2$                        |                         |                        |                     |                                 |      |     |
| PEO-LiTFSI                            | PANI@C/S-<br>280/Li     | 1.0-3.0                | 80                  | 876 (After 60cycles)            | 2015 | [6] |
| -MIL-53(AI)                           |                         |                        |                     |                                 |      |     |
| PEO-LITNFSI                           | CMK-3/S/Li              | 1.5-3.0                | 60                  | 450 (After 200cycles)           | 2016 | [7] |
| PEO-LiTFSI                            | N-CNs/S/Li              | 1.8-2.6                | 37                  | 600 (After 80cycles)            | Our  |     |
| -IL@ZrO <sub>2</sub>                  |                         |                        | 50                  | 986 (After 40cycles)            | work |     |

#### **Table S1.** Comparison of the electrochemical performance of different all-solid-state batteries

#### References

- 1 M. Wetjen, G. T. Kim, M. Joost, G. B. Appetecchi, M. Winter, S. Passerini, J. Power Sources, 2014, 246, 846-857
- 2 W. Zhou, H. Gao, J. B. Goodenough, Adv. Energy Mater., 2016, 6, 1501802
- 3 D. Lin, W. Liu, Y. Liu, H. R. Lee, P. C. Hsu, K. Liu, Y. Cui, Nano Lett., 2016, 16, 459-465.
- 4 J. Zhang, N. Zhao, M. Zhang, Y. Li, P. K. Chu, X. Guo, Z. Di, X. Wang, H. Li, Nano Energy, 2016, 28, 447-454.
- 5 J. Hassoun, B. Scrosat, Adv. Mater., 2010, 22, 5198-5201
- 6 C. Zhang, Y. Lin, J. Liu, J. Mater. Chem. A, 2015, 3, 10760-10766.

7Q. Ma, X. Qi, B. Tong, Y. Zheng, W. Feng, J. Nie, Y. Hu, H. Li, X. Huang, L. Chen, Z. Zhou, ACS Appl. Mater. Interfaces, 2016, 8, 29705-29712.