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Fig. S1. Photo of the experimental setting up of EDI system. The EDI device works in a flow through 

system, where 50 ml NaCl solution is used as feed. The feed water is circled back through the EDI 
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device by the pump with controlled flow rate, while the conductivity of the feed solution is 

continuously monitored and recorded by a conductivity meter. A constant current is applied through 

the EDI device by an electrochemical workstation. 

 

Fig. S2. (a) The working electrodes of AC and NTP/rGO; (b) the half electrodes of AC with anion 

exchange membrane and NTP/rGO with cation exchange membrane; (c) EDI device. From left to 

right: AC electrode, anion exchange membrane, separator, cation exchange membrane, NTP/rGO 

electrode. 
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Fig. S3. Three-electrode cyclic voltammetry (CV) curves of NTP/rGO with Pt as counter and Ag/AgCl 

as reference electrode in 1 M NaCl electrolyte. Scan rate: 0.2 mV s-1 
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Fig. S4. The removal capacity of NTP/rGO at different feed concentration. The flow rate of the feed 

is 400 mL min-1, while the initial concentration of 50 mL feed solution varies from 250 to 1500 mg L-

1 , the mass of active materials is ~ 10 mg for both NTP/rGO and AC electrode, and the applied current 

density is 150 mA g-1. 

  

Fig. S5. The electric charge capacity of EDI system over 100 cycles based on NTP/rGO during 

intercalation and deintercalation at current density of 100 mA g-1.  
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Fig. S6. Removal capacity of the NTP/rGO and NTP electrodes during cycling experiments with 

current density of 150 mA g-1.

Fig. S7. The concentration of titanium in feed solution of NTP and NTP/rGO electrodes after 100 

cycles at 100 mA g-1.
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Fig. S8. (a) TGA profile of NTP/rGO with different ratio of graphene measured at a heating rate of 5 

°C min−1 in air. (b) Rate performance and removal capacity retention ability of NTP/rGO electrodes 

containing different ratio of graphene; (c-e) SEM images of NTP/rGO with 8%, 13% and 17% 

graphene.  
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Fig. S9. EDS spectra of NTP/rGO. A detailed comparison of EDS spectra of initial state, intercalation 

state of sodium, and deintercalation state of sodium. 

 

Table S1. The element composition of Na, Ti, P, and O in the as-prepared NTP/rGO, sodium 
intercalation state and sodium deintercalation state, and the calculated weight ratio of Na:P. 

Wt % Na Ti P O Na : P 

Initial NTP/rGO 5.4 24.1 22.1 48.2 0.249 

Na intercalation 9.7 21.3 20.5 48.5 0.473 

Na deintercalation 5.7 23.2 21.6 49.5 0.264 

 

 

 

 


