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Fig. S6 FT-IR spectrum of 2.



Fig. S8. SEM images of 2.
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Fig. S9 Asymmetric unit of 1.
Color code: O (red), Fe (olive), N (blue), C (dark gray), Co (magenta) and H (light gray).

Fig. S10 Octahedral co-ordination environment around Co(II) center in 1.
Color code: Co (magenta), N (blue), O (red).
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Fig. S11 1D chain along c axis in 1.
Color code: O (red), Fe (olive), N (blue), C (dark gray) and Co (magenta).

Fig. S12 Space fill model of the 2D Framework showing the arrangements of FCDCA and bpy
ligands along c-axis in 1.
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Fig. S13 (a) Inter/Intra-molecular H- bonding Interaction between the two 2D frameworks, and
(b) Packing diagram of 1 showing a 3D framework formed via inter/intra-molecular hydrogen-
bonding and n—= interaction (blue: «t...w; green: H-bonding).

Fig. S14. Pentagonal bipyramidal co-ordination environment around Co(II) center in 2. Color
code: Co (magenta), N (blue), O (red).
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Table S1. Bond lengths [A] and angles [°] for 1.

Bond distances

Co(1) —O(4)#1 2.07(2)
Co(1) —0O() 2.106(18)
Co(1) —0O(5) 2.12(2)
Co(1) —0O(6) 2.12(2)
Co(1) —N(1) 2.15(2)
Co(1) —N(6)#1 2.19(2)
Co(2) —O(7) 1.99(2)
Co(2)—O 2.067(18)
Co(2) —N(3) 2.11(2)
Co(2) —O0)#2 2.122(19)
Co(2) —N(2) 2.12(2)
Co(2) —OQR1#2 2.19(2)
Co(3) —0(10) 2.03(2)
Co(3) —017) 2.091(19)
Co(3) —0O(18) 2.11(2)
Co(3) —N(7) 2.16(2)
Co(3) —N(5) 2.18(2)
Co(3) —0(19) 2.18(2)
Co(4) —O(11) 2.080(18)
Co(4) —O(16)#3 2.080(19)
Co(4) —0(13) 2.087(18)
Co(4) —0(12) 2.103(18)
Co(4) —N(8) 2.13(2)
Co(4) —N(4)#4 2.192)
Bond angles
O#)#1—Co(1) —O(1) 178.7(9)
O@#1—Co(1) —O(5) 93.2(10)
O(1) —Co(1) —O(5) 86.9(9)
O@#1—Co(1) —O(6) 87.6(9)
O(1) —Co(1) —O(6) 92.3(8)
O(5) —Co(1) —O(6) 179.1(10)
O@#1—Co(1) —N(1) 91.6(10)
O(1) —Co(1) —N(1) 89.7(9)
O(5) —Co(1) —N(1) 90.2(10)
0O(6) —Co(1) —N(1) 90.0(11)
O@)#1—Co(1) —N(6)#1 87.5(9)
O(1) —Co(1) —N(6)#1 91.2(9)
O(5) —Co(1) —N(6)#1 88.2(8)
0(6) —Co(1) —N(6)#1 91.6(9)
N(1) —Co(1) —N(6)#1 178.1(10)
0O(7) —Co(2) —0(22) 90.4(8)
O(7) —Co(2) —N(3) 87.8(10)
0(22) —Co(2) —N(3) 88.3(10)
O(7) —Co(2) —O(20)#2 170.9(9)
0(22) —Co(2) —O(20)#2 98.6(9)
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N(3)—Co(2) —O(20)#2 93.5(10)
0(7) —Co(2) —N(2) 89.2(8)
0(22) —Co(2) —N(2) 94.3(9)

N(3) —Co(2) —N(2) 176.0(11)
0(20)#22—Co(2) —N(2) 89.2(8)
0(7) —Co(2) —OQ1)#2 109.5(9)
0(22) —Co(2) —OQ21)#2 160.1(9)
N(3)—Co(2) —OQ21)#2 92.0(9)
0(20y#2—Co(2) —OQ21)#2 61.5(8)
N(2) —Co(2) —OQ1)#2 86.6(9)
0(10) —Co(3) —O(17) 93.7(9)
0(10) —Co(3) —O(18) 167.3(9)
0(17) —Co(3) —O(18) 99.0(9)
0(10) —Co(3) —N(7) 89.4(8)
0(17) —Co(3) —N(7) 89.9(9)
0(18) —Co(3) —N(7) 90.3(9)
0(10) —Co(3) —N(5) 90.1(10)
0(17) —Co(3) —N(5) 92.0(9)
0(18) —Co(3) —N(5) 89.8(10)
N(7) —Co(3) —N(5) 178.1(11)
0(10) —Co(3) —0O(19) 104.7(9)
0(17) —Co(3) —0O(19) 161.3(9)
0(18) —Co(3) —O(19) 62.6(8)
N(7) —Co(3) —O(19) 87.0(8)
N(5) —Co(3) —O(19) 91.3(9)
0(10) —Co(3) —C(77) 136.2(12)
0(17) —Co(3) —C(77) 130.0(12)
0(18) —Co(3) —C(77) 31.1(9)
N(7) —Co(3) —C(77) 88.4(9)
N(5) —Co(3) —C(77) 90.7(10)
0(19) —Co(3) —C(77) 31.6(9)
O(11) —Co(4) —O(16)#3 93.1(8)
O(11) —Co(4) —O(13) 87.8(8)
0(16)#3—Co(4) —0(13) 179.1(9)
0(11) —Co(4) —O(12) 173.7(8)
0(16)#3—Co(4) —0(12) 92.6(8)
0(13) —Co(4) —O(12) 86.5(9)
O(11) —Co(4) —N(8) 90.6(9)
0(16)#3—Co(4) —N(8) 87.9(9)
0(13) —Co(4) —N(8) 92.2(8)
0(12) —Co(4) —N(8) 87.009)
0(11) —Co(4) —N(4)#4 92.7(10)
O(16)#3—Co(4) —N(4)#4 83.5(9)
0(13) —Co(4) —N(4)#4 96.3(8)
0(12) —Co(4) —N(4)#4 90.5(9)
N(8) —Co(4) —N(4)#4 170.9(10)
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Symmetry transformations used to generate equivalent atoms:
#1 -x+2,y-1/2,-z+3/2  #2 x,y-1,z #3 -x,y-1/2,-z+1/2

#4 -x,y+1/2,-z+1/2
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Table S2. H-bonding Interactions in 1.

D_H ....... A D_H HA DA LD-HA
O12-HI2B----014 (0) |0.938 1.699 2.567(.030) 152.42
O110-HI1C----O111 (18) | 0.938 1.976 2.791(.018) 144.13
0107-H10M----0103 (11) | 0.938 2.469 2.805(.023) 103.10
0106-H10L----0109 (11) | 0.938 2.077 2.712(.017) 123.69
0105-H10J----0102 (8) | 0.938 2.320 2.822(.019) 113.08
0109-HIOR---0106 (5) | 0.938 1.963 2.712(.017) 135.46
0102-H10C----0107 (5) | 0.938 2.077 2.786(.015) 131.19
O17-H17B----0107 (5) | 0.938 2.143 2.805(.023) 126.55
O11-H11B----015 (3) |0.938 1.815 2.625(.030) 142.90
0103-HI0E----0107 (5) | 0.938 2.627 2.948(.017) 100.64
05-H5B--03 (2) 0.938 1.816 2.657(.033) 147.79
05-H5A----0108 (1) 0.938 2.375 2.931(.027) 117.68
O110-H11D----0106 (0) | 0.938 2.015 2.581(.017) 117.10
0106-HI0K----O110 (0) | 0.938 2.096 2.581(.017) 110.73
0103-HI0F----0104 (0) | 0.938 2.481 2.854(.013) 103.82
0102-H10D----0101 (0) | 0.938 2.088 2.612(.014) 113.79
022-H22A----0105 (0) | 0.938 2317 2.728(.026) 105.95
0107-HI10M----017 (11) | 0.938 2.469 2.805(.023) 101.10
O111-HI1F----0110 (14) | 0.938 2.385 2.791(.018) 105.87
O103-HIOE----02 (16) | 0.938 2.327 2.749(.024) 106.81
O103-HIOF----0104 (0) | 0.938 2.481 2.854(.013) 103.82
O101-HI0A----O18 (0) | 0.938 2.449 2.805(.023) 102.42

Equivalent positions:

(0) xy,z

(1) -x+1/2+1,-y+1,+z+1/2

(2) x+2,4y-1/2,-2+1/2+1

(3) x,+y-1/2,-z+1/2
(4) -x+1/2,-y,+z-1/2
(5) -x+1/2,-y+1,+z+1/2
(8) x,ty-1,+z

11y -x+1/2,-y+1,+z-1/2

(14)
(16)
(18)

x+1/2,-y+1/2+1,-z+1
-x+1,+y+1/2,-z+1/2+1

x-1/2,-y+1/2+1,-z+1
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Fig. S15 (a) CV profiles of 2-GCE at varied scan rates (10-500 mV s!), (b) GCD curves for 2-
GCE at varied current densities (1.2-50 A g!), and (¢) GCD curves for 2-GCE at 1.2 A g'!, in

1 M KOH solution.
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Fig. S16 (a) Comparison of CV profiles of I-GCE and 2-GCE at a scan rate of 100 mV s°!, (b)
comparison of GCD profiles of I-GCE and 2-GCE at 1.2 A g\
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Fig. S17 Comparison of CV profiles of I-GCE before and after cycling.
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Fig. S18 N, isotherm and BJH plot of (a) 1 and (b) 2, respectively.

The N, isotherm reveals a high BET surface area of 41.56 m?/g for 1 and 10.306 m?/g for 2 as
obtained from Fig. S18a and Fig. S18c, respectively. Additionally, the BJH curves have also

been shown for 1 and 2 in Fig. S18b and Fig. S18d, respectively.
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Fig. S19 AC conductivity test of 1 and 2.

The AC conductivity measurements were performed to reveal the conductivity of 1 and 2. The
resistance of 1 and 2 were analysed with varying frequencies and the conductivities were

plotted as shown in Fig. S19. The results clearly show that 1 has better conductivity than 2.
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CR@1

Fig. S22 Color change of 1, (A) before adsorption, (B) after adsorption of CSB (C) after
adsorption of CR.
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Fig. S23 UV-vis spectra of aqueous solution of CSB adsorption by 2.
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Fig. S24 UV-vis spectra of aqueous solution of CR adsorption by 2.
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Calculation of product yield

. actual number of moles
% Yield = , X 100%
theoretical number of moles

Compound Weight Theoretical number of | Actual number Yield (%)
(mg) moles (mmol) of moles (mmol)
1 68 0.05 0.03 60.3
2 60 0.2 0.14 72.6
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