Supporting online materials for

A metal-free and flexible supercapacitor based on redox-active lignin functionalized graphene hydrogel

Fengfeng Li, Xiluan Wang * and Runcang Sun *

Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China.

*Corresponding author: Tel: +86-10-62336903; Fax: +86-10-62336903

E-mail address: wangxiluan@bjfu.edu.cn; rcsun3@bjfu.edu.cn

Figure S1. (a) Nitrogen adsorption-desorption isotherm and (b) pore size distribution of LS-GH calculated by Barrett-Joyner-Halenda method in Nitrogen adsorption.

Figure S2. Statistical pore size distribution of LS-GH calculated by mercury intrusion porosimetry method.

Figure S3. SEM images of freeze-dried samples of GH (a) and LS-GH (b).

Figure S4. FTIR spectra of GH and LS-GH.

Figure S5. EDX spectra of GH (a, b) and LS-GH (c, d) in arbitrary positions.

Figure S6. CV profiles of LS-GH and GH at a scan rate of 5 mV s⁻¹ in a threeelectrode configuration.

Figure S7. High-resolution XPS spectra of O 1s peaks for GH before (a) and after (b)

charging.

Figure S8. CV curves of LS-GH based symmetric supercapacitor in 1 M H_2SO_4 aqueous electrolyte at various scan rates ranging from 5 to 200 mV s⁻¹.

Figure S9. GC curves LS-GH based symmetric supercapacitor in 1 M H_2SO_4 aqueous electrolyte at different current densities ranging from 1 to 20 A g^{-1} .

Figure S10. CV curves of LS-GH based flexible solid-state supercapacitor in PVA-

Figure S11. GC curves of LS-GH based flexible solid-state supercapacitor in PVA- H_2SO_4 gel electrolyte at the current density ranging from 1 to 20 A g⁻¹.

Figure S12. Nyquist plots of LS-GH based supercapacitor in aqueous H_2SO_4 and $PVA-H_2SO_4$ gel electrolyte.

Figure S13. Cycling stability of the LS-GH based flexible solid-state supercapacitor in $PVA-H_2SO_4$ gel electrolyte at a current density of 10 A g⁻¹.

Sample	С	Н	0	Ν	S
GH	77.85	1.25	20.33	0.14	0.43
LS-GH	70.37	2.24	25.91	0.25	1.23

Table S1. Elemental analysis of the GH and LS-GH samples.

Table S2. Capacitive performances of reported supercapacitors based on 3D graphene

 electrode materials in aqueous electrolyte.

Electrode materials	Current density or Scan rate	Specific capacitance	Cycling stability	Reference
LS-GH	1 A g ⁻¹	432 F g ⁻¹	98.8% (2000) 90% (10000)	This work
Graphene hydrogel	1 A g ⁻¹	220 F g ⁻¹	92% (2000)	13
MnO ₂ /graphene hydrogel	1 A g ⁻¹	242 F g ⁻¹	89.4 (1000)	21
MnO ₂ /graphene foam	1 A g ⁻¹	422.5 F g ⁻¹	None	16
TiO ₂ /graphene hydrogel	0.5 A g ⁻¹	206.7 F g ⁻¹	96.4% (150)	20
RuO ₂ /graphene hydrogel	1 A g ⁻¹	345 F g ⁻¹	None	S1
VO ₂ /graphene hydrogel	1 A g ⁻¹	426 F g ⁻¹	92% (5000)	S2
Nitrogen doped graphene/Fe ₃ O ₄ aerogel	5 mV s ⁻¹	386 F g ⁻¹	97% (1000)	S3
Carbon nanotube spaced graphene aerogel	2.5 A g ⁻¹	245.5 F g ⁻¹	97% (2000)	40

Electrode materials	Current density or Scan rate	Specific capacitance	Cycling stability	Reference
3D hollow balls of graphene/polyaniline hybrid	1 A g ⁻¹	331 F g ⁻¹	86% (500)	S4
Nitrogen and boron co-doped graphene aerogel	1 mV s ⁻¹	239 F g ⁻¹	~100% (1000)	48
Hydroquinone functionalized graphene hydrogel	1 A g ⁻¹	441 F g ^{−1}	86% (10000)	11
Aminoanthraquinone functionalized graphene hydrogel	0.3 A g ⁻¹	258 F g ⁻¹	None	S5
Polypyrrole/graphene foam	1.5 A g ⁻¹	350 F g ⁻¹	None	S6
Polypyrrole/graphene hydrogel	10 mV s ⁻¹	375 F g ⁻¹	87% (4000)	S7
3D porous graphene/polyaniline film	0.5 A g ⁻¹	385 F g ⁻¹	88% (5000)	S8

Table S3. Capacitive performances of reported flexible solid-state supercapacitors based on 3D graphene electrode matrials in PVA-H₂SO₄ gel electrolyte.

Electrode materials	Current density or Scan rate	Specific capacitance	Cycling stability	Reference
LS-GHs	1 A g ⁻¹	408 F g ⁻¹	84% (10000)	This work
Graphene hydrogel	1 A g ⁻¹	186 F g ⁻¹	91.6% (10000)	10
Hydroquinone functionalized graphene hydrogel	1 A g ⁻¹	412 F g ⁻¹	87% (10000)	46
3D hollow balls of graphene/polyaniline hybrid	1 A g ⁻¹	182 F g ⁻¹	81.8% (500)	S4
3D nitrogen and boron co- doped graphene aerogel	5 mV s^{-1}	62 F g ⁻¹	None	48
Mesoporous carbon/graphene aerogel	5 mV s^{-1}	44.3 F g ⁻¹	92.6% (1000)	50
MoO ₃ wrapped graphene framework	0.5 A g ⁻¹	404 F g ⁻¹	80% (5000)	49
ZIF-derived nitrogen doped carbon/3D graphene framework	5 mV s^{-1}	53 F g ⁻¹	92% (1000)	S9
3D MnO ₂ /graphene foam	0.5 A g ⁻¹	69.4 F g ⁻¹	84.4% (10000)	16
Cellulose nanofiber/graphene aerogel	5 mV s ⁻¹	207 F g ⁻¹	99.1% (5000)	S10

Supplementary References

S1 Y. Y. Yang, Y. R. Liang, Y. D. Zhang, Z. Y. Zhang, Z. M. Li, Z. G. Hu, New J. Chem., 2015, **39**, 4035–4040.

S2 H. W. Wang, H. Yi, X. Chen, X. F. Wang, J. Mater. Chem., A, 2014, 2, 1165–1173.

S3 X. Y. Zhang, S. H. Sun, X. J. Sun, Y. R. Zhao, L. Chen, Y. Yang, W. Lü, D. B.
Li, *Light: Sci. Appl.*, 2016, 5, e16130.

S4 N. B. Trung, T. Van Tam, H. R. Kim, S. H. Hur, E. J. Kim, W. M. Choi, *Chem. Eng. J.*, 2014, **255**, 89–96.

S5 Q. Wu, Y. Q. Sun, H. Bai, G. Shi, *Phys. Chem. Chem. Phys.*, 2011, **13**, 11193–11198.

S6 Y. Zhao, J. Liu, Y. Hu, H. H. Cheng, C. G. Hu, C. Jiang, L. Jiang, A. Y. Cao, L.
T. Qu, *Adv. Mater.*, 2013, 25, 591–595.

S7 F. Zhang, F. Xiao, Z. H. Dong, W. Shi, *Electrochim. Acta*, 2013, 114, 125–132.

S8 Y. N. Meng, K. Wang, Y. J. Zhang, Z. X. Wei, Adv. Mater., 2013, 25, 6985-6990.

S9 L. Wan, J. Wei, Y. Liang, Y. X. Hu, X. F. Chen, E. Shamsaei, R. W. Ou, X. W. Zhang, H. T. Wang, *RSC Adv.*, 2016, 6, 76575–76581.

S10 K. Z. Gao, Z. Q. Shao, J. Li, X. Wang, X. Q. Peng, W. J. Wang, F. J. Wang, J. Mater. Chem. A, 2013, 1, 63–67.