## **Electronic Supplementary Information**

## Hydrogen evolution reaction catalyzed by ruthenium ion-complexed graphitic carbon nitride nanosheets

Yi Peng,<sup>a</sup> Bingzhang Lu,<sup>a</sup> Limei Chen,<sup>a</sup> Nan Wang,<sup>b</sup> Jia-En Lu,<sup>a</sup> Yuan Ping,<sup>a,\*</sup> and Shaowei Chen<sup>a,\*</sup>

<sup>a</sup> Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA

<sup>b</sup> New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China

|                                     | C 1s (eV) |        | Ru 3d (eV) |        | N 1s (eV) |                | Cl 2p (eV) |        | Ru:C=N-C | Ru:Cl  |
|-------------------------------------|-----------|--------|------------|--------|-----------|----------------|------------|--------|----------|--------|
|                                     | N-C=N     | C-C    | 5/2        | 3/2    | C=N-C     | N-C3 or H-N-C2 | 3/2        | 1/2    |          |        |
| C <sub>3</sub> N <sub>4</sub>       | 287.31    | 284.06 | -          | -      | 397.80    | 399.58         | -          |        | -        | -      |
| C <sub>3</sub> N <sub>4</sub> -Ru-P | 287.57    | 284.27 | 281.67     | 285.77 | 398.08    | 399.48         | 197.50     | 199.00 | 1:4.7    | 1:0.48 |
| C <sub>3</sub> N <sub>4</sub> -Ru-F | 287.93    | 284.2  | 281.30     | 285.40 | 398.48    | 399.48         | 197.70     | 199.20 | 1:2.0    | 1:0.51 |

Table S1. Summary of XPS results of C3N4, C3N4-Ru-F, and C3N4-Ru-P

Table S2. Comparison of the HER performance of C<sub>3</sub>N<sub>4</sub>-Ru-F and relevant catalysts reported in recent literature.

| Catalyst                              | η <sub>10</sub><br>(mV) | Tafel slope<br>(mV/dec) | Loading<br>(mg/cm <sup>2</sup> ) | $   \begin{array}{c}     J_0 \\     (\mu A/cm^2)   \end{array} $ | reference                                |
|---------------------------------------|-------------------------|-------------------------|----------------------------------|------------------------------------------------------------------|------------------------------------------|
| C <sub>3</sub> N <sub>4</sub> -Ru-F   | -140                    | 57                      | 0.153                            | 72                                                               | This work                                |
| C <sub>3</sub> N <sub>4</sub> -Cu     | -390                    | 76                      | 0.28                             | N/A                                                              | Appl. Surf. Sci., 2015, 357, 221         |
| C₃N₄-nanoribbon-G                     | -207                    | 54                      | 0.143                            | 39.8                                                             | Angew. Chem. Int. Ed. 2014, 53,<br>13934 |
| C <sub>3</sub> N <sub>4</sub> /NG     | -240                    | 51.5                    | 0.1                              | 0.35                                                             | Nat. Comm. 2014, 5, 3783                 |
| Co@NG                                 | -180                    | 79                      | 0.285                            | NA                                                               | Chem. Mater. 2015, 27, 2026              |
| Co-NRCNT                              | -260                    | 80                      | 0.28                             | 10                                                               | Angew. Chem. Int. Ed. 2014, 126,<br>4461 |
| Co-C-N                                | -138                    | 55                      | N/A                              | N/A                                                              | JACS, 2015, 137, 15070                   |
| Mo <sub>2</sub> C/CNT-GR              | -130                    | 58                      | 0.66                             | 63                                                               | ACS Nano, 2014, 8, 5164                  |
| Mn0.05C00.95Se2                       | -195                    | 36                      | 0.28                             | 68.3                                                             | JACS, 2016, 138, 5087                    |
| MoS <sub>0.94</sub> P <sub>0.53</sub> | -150                    | 57                      | 0.285                            | N/A                                                              | Adv. Mater., 2016, 28, 1427              |
| WS2@P,N,O-<br>graphene                | -125                    | 52.7                    | 0.159                            | 131                                                              | Adv. Mater. 2015, 27, 4234               |

| N,P-C                      | -163 | 89 | 0.3     | 160 | Angew. Chem. Int. Ed. 2016, 128,<br>2270  |
|----------------------------|------|----|---------|-----|-------------------------------------------|
| MoP                        | -145 | 54 | N/A     | 34  | Energy Environ. Sci., 2014, 7, 2624       |
| WS <sub>2</sub> nanosheets | -230 | 60 | 0.1-0.2 | 20  | Nat. Mater., 2013, 12, 850                |
| S,N-C                      | -116 | 68 | 0.285   | N/A | Nano Energy, 2015, 16, 357                |
| MoS <sub>2</sub> /carbon   | -159 | 56 | 0.285   | N/A | Nano Energy, 2016, 22, 490                |
| Au@N-C                     | -130 | 77 | 0.357   | N/A | Angew. Chem. Int. Ed., 2016, 128,<br>8556 |

**Table S3.** Summary of XPS results of  $C_3N_4$ -M nanocomposites (M = Fe<sup>3+</sup>, Co<sup>3+</sup>, Ni<sup>3+</sup> and Cu<sup>2+</sup>).

|                                   | 2p <sub>3/2</sub> | 2p <sub>3/2</sub> (satellite) | 2p <sub>1/2</sub> | 2p <sub>1/2</sub> (satellite) |
|-----------------------------------|-------------------|-------------------------------|-------------------|-------------------------------|
| C <sub>3</sub> N <sub>4</sub> -Fe | 708.9             | 713.1                         | 722.1             | 726.7                         |
| C <sub>3</sub> N <sub>4</sub> -Co | 780.0             | 795.4                         | 784.7             | 800.4                         |
| C <sub>3</sub> N <sub>4</sub> -Ni | 855.3             | 872.3                         | 861.2             | 878.2                         |
| C <sub>3</sub> N <sub>4</sub> -Cu | 932.7             | 941.0                         | 952.8             | 961.6                         |

Table S4. Results of calculated hydrogen adsorption energy ( $\Delta G_{H^*}$ ) of the labeled positions in Figure S14.

| Catalyst                          | Bonding position | Total Energy (eV) | Avib (eV)  | ΔE (eV)  | ΔG (eV)  |
|-----------------------------------|------------------|-------------------|------------|----------|----------|
| · · ·                             |                  |                   | . ,        | , ,      | . ,      |
| CN                                | Ν                | -3142.38029       | 0.02758272 | -0.66004 | -0.63245 |
| C3IN4                             | С                | -3140.52942       | 0.03672051 | 1.19083  | 1.22755  |
| C <sub>3</sub> N <sub>4</sub> -Ru | Ru               | -5782.20717       | 0.20015401 | -0.69182 | -0.49166 |
|                                   | N1               | -5781.2634        | 0.31675791 | 0.25195  | 0.56871  |
|                                   | N2               | -5781.22813       | 0.31675791 | 0.28722  | 0.60397  |
|                                   | С                | -5782.32939       | 0.33418123 | -0.81404 | -0.47986 |

The adsorption free energy ( $\Delta G_{H^*}$ ) is calculated by the following equations,

 $\Delta \mathbf{E} = \mathbf{E}(^* + \mathbf{H}) - (\mathbf{E}(^*) + \frac{1}{2}\mathbf{E}(\mathbf{H}_2)); \ \Delta \mathbf{G} = \Delta \mathbf{E} + \mathbf{Z}\mathbf{P}\mathbf{E} - \mathbf{T}\Delta\mathbf{S}$ 

where E is the total energy,  $\Delta E$  is adsorption energy, \* is the active site,  $\Delta G$  is Gibbs free energy, ZPE is the zero point energy, T is temperature and  $\Delta S$  is the entropy change.



**Figure S1**. Representative TEM images of (A) graphitic  $C_3N_4$  nanosheets and (B, C) of  $C_3N_4$ -Ru-F at varied magnifications. Scale bar is 500 nm in (A), 100 nm in (B) and 5 nm in (C). From Panels (B) and (C), one can see that no Ru or RuO<sub>x</sub> nanoparticles are formed.



Figure S2. XRD patterns of  $C_3N_4$  and  $C_3N_4$ -Ru-F.



**Figure S3.** (A) Typical AFM topograph of C<sub>3</sub>N<sub>4</sub> nanosheets. (B) Height analysis for the line scan in panel (A). (C) Thickness histogram of the C<sub>3</sub>N<sub>4</sub> nanosheets based on AFM height measurements as exemplified in panel (A).



**Figure S4.** (A) Polarization curves of HER on  $C_3N_4$ -Ru in 0.5 M H<sub>2</sub>SO<sub>4</sub> where the nanocomposites were prepared with the addition of different amounts of RuCl<sub>3</sub> (specified in Figure legends). (B) Variation of  $\eta_{10}$  with the amount of RuCl<sub>3</sub> added and Ru content in  $C_3N_4$ -Ru nanocomposites quantified by ICP-MS measurements.

To examine the effects of Ru contents on the HER activity, we prepared two additional samples with the addition of 14 and 84 mg of RuCl<sub>3</sub>, the Ru contents in the corresponding C3N4-Ru composites were determined by both ICP-MS and XPS measurements, as shown in the table below. First, one can see that the Ru content in the C3N4-Ru nanocomposites was almost identical when determined by ICP-MS and XPS measurements. Second, the Ru content increased with the amount of RuCl<sub>3</sub> added in the synthesis, and became unchanged when more than 56 mg of RuCl<sub>3</sub> was added, suggesting that indeed the sample was saturated with Ru centers. Third, electrochemical measurements did show enhanced HER performance with increasing Ru content in the C3N4-Ru nanocomposites. However, the increase was nonline-ar, as depicted in Figure S4.

| RuCl₃ feed amount (mg)                   | Ru at.%<br>(ICP-MS) | Ru at.%<br>(XPS) |
|------------------------------------------|---------------------|------------------|
| 14                                       | 3.23                | 4.10             |
| 28 (C <sub>3</sub> N <sub>4</sub> -Ru-P) | 6.25                | 7.09             |
| 56 (C₃N₄-Ru-F)                           | 10.95               | 12.50            |
| 84                                       | 11.20               | 12.60            |



Figure S5. HER current density of C<sub>3</sub>N<sub>4</sub>-Ru-F, C<sub>3</sub>N<sub>4</sub>-Ru-P, and C<sub>3</sub>N<sub>4</sub> at the overpotential of –200 mV.



**Figure S6**. XPS spectra of the C<sub>3</sub>N<sub>4</sub>-M nanocomposites (M = Fe<sup>3+</sup>, Co<sup>3+</sup>, Ni<sup>3+</sup> and Cu<sup>2+</sup>): (A) Fe 2p, (B) Co 2p, (C) Ni 2p and (D) Cu 2p. Black curves are experimental data and colored curves are deconvolution fits. The fitting results are listed in Table S3.



**Figure S7**. HER performance of the C<sub>3</sub>N<sub>4</sub>-M nanocomposites (M = Fe<sup>2+</sup>, Co<sup>2+</sup>, Ni<sup>2+</sup> and Cu<sup>2+</sup>). As indicated in the figure legends, the overpotentials ( $\eta_{10}$ ) needed to reach the current density of 10 mA/cm<sup>2</sup> were all very close to that of C<sub>3</sub>N<sub>4</sub> alone and much more negative than that of C<sub>3</sub>N<sub>4</sub>-Ru-F. This indicates the unique contributions of Ru ions to the HER activity, whereas minimal from other metal ions.



**Figure S8**. (A) Schematic illustration of the full water splitting cell setup. (B) Photograph of the homemade water splitting setup. (C) Results of water displacement during 20 min of electrochemical operation. Inset is the photograph of water displacement after 20 min.



**Figure S9**. Cyclic voltammograms of  $C_3N_4$  (right) and  $C_3N_4$ -Ru-P (left) within the range of +0.1 to +0.2 V at difference scan rates (10-60 mV/s), where no faradaic reaction occurred.



Figure S10. Nyquist plots of HER on  $C_3N_4$ -Ru-F at different overpotentials (-50, -100, -150 and -200 mV).



Figure S11. XPS spectra of the C 1s and Ru 3d electrons in  $C_3N_4$ -Ru-F before and after 1000 electrochemical cycles.



**Figure S12**. (A) 1×1 and (B) 2×2 cell structures of  $C_3N_4$ . (C) 1×1 and (D) 2×2 cell structures of  $C_3N_4$ -Ru. In these cell structures, the labeled atoms will be used as the targets to calculate the Gibbs free-energy for hydrogen adsorption ( $\Delta G_{H^*}$ ). The molecular configurations are obtained after relax calculations, and coordination of ruthenium ions is based on experimental data (Figure 2). For the calculations in (C) and (D), only the possible active sites are chosen and similar sites are ignored.



**Figure S13**. Stable hydrogen adsorption on labeled (A) N and (B) C of  $C_3N_4$  after relax calculation. Tops are topic view and bottoms are side view.



**Figure S14**. Stable hydrogen adsorption on labeled (A) Ru, (B) N1, and (C) C of  $C_3N_4$ -Ru after relaxing calculations. Tops are topic view and bottoms are side view. For N sites, the results of N1 and N2 are similar, so only one of them is shown here.