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1 Fig. S1. Optical and electrical characterization of synthesized thin films. (a) Transmittance 
2 and (b) absorbance spectra of the thin films synthesized with different S/P powder precursor 
3 ratios. Transmittance was gradually increased with respect to increase of P mounts. MoS2 and 
4 P:MoS2 (S/P = 3:1) showed the characteristic absorption peaks of MoS2. When the phosphorus 
5 ratio increased, the MoS2 absorption peak disappeared, indicating that the phosphorus-rich 
6 (S:MoP, S/P =1, S/P = 0.33, and P) thin films were metallic. (c) The current-voltage (I-V) 
7 sweep data with 0.1 A compliance. The S:MoP (S/P = 0.33 and P) thin films show the metallic 
8 behavior, while the MoS2 (S) and P:MoS2 (S/P = 3 and S/P =1) thin films show the 
9 semiconducting behavior. (d) The magnified I-V curve of dashed region in the (c). The MoS2 

10 (S) and P:MoS2 (S/P = 3) thin films clearly showed the unequal rectifying behavior which 
11 means semiconducting property.
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1 Fig. S2. XPS wide scan of the thin films synthesized with different S/P powder precursor ratios.
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1 Fig. S3. The XPS atomic ratio of synthesized thin films as a function of the S/P powder 
2 precursor ratio.
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1 Fig. S4. AFM images of the thin films synthesized with different S/P powder precursor ratios. 
2 Nano-granular surfaces were observed in each thin film.
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1 Fig. S5. AFM images with line profiles of the thin films synthesized with different S/P powder 
2 precursor ratios. The thickness of the synthesized thin films decreased from ~ 20 to ~ 13 nm 
3 when P atoms were completely substituted into the MoS2 atomic structure.
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1 Fig. S6. Surface analysis of synthesized thin films with 5 different regions. The average RMS 
2 roughness values of MoS2 and S:MoP (S/P=0.33) are 4.74 and 2.21 nm, respectively.
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1 Fig. S7. (a)–(c) The low-magnification transmission electron microscopy (TEM) images of the 
2 thin films synthesized with different S/P powder precursor ratios. (d)–(f) The selected area 
3 electron diffraction (SAED) patterns of the thin films synthesized with different S/P powder 
4 precursor ratios. The SAED patterns of the MoS2 thin films showed the MoS2 (002) plane. The 
5 SAED patterns significantly changed into MoP (100) and MoP (001) planes with the 
6 introduction of phosphorus into the MoS2 atomic structure.
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1 Fig. S8. The high-resolution TEM images of the thin films synthesized with different S/P 
2 powder precursor ratios. The surface of the thin films was gradually smoothed with an increase 
3 in the S/P powder precursor ratio.
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1 Fig. S9. (a) Electrochemical (EC) performances of the synthesized thin films on Au electrode. 
2 (b) Tafel plots from the linear portion of the EC measurement. (c) The electrochemical 
3 impedance spectroscopy measurements. (d) The faradaic efficiency measurements of the 
4 synthesized thin films transferred onto Au electrodes.
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1 Fig. S10. The cyclic voltammetric curves of (a) MoS2/p-Si and (b) S:MoP (S/P = 0.33)/p-Si 
2 photocathodes. The statistical results of (c) current density at 0 V, (d) potential vs. RHE @ 10 
3 mA/cm2, and (e) RMS roughness values for the MoS2 and S:MoP (S/P = 0.33) thin films.
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1 The incident-photon-to-current conversion efficiency spectra of the S:MoP/p-Si were 

2 recorded at an applied potential of 0 V vs. RHE, as shown in Supplementary Fig. S11. Among 

3 the tested photocathodes, the photocathode with a S:MoP (S/P = 0.33) layer exhibited the 

4 highest efficiency of around 80% in the wavelength range of 410–720 nm. The linear-sweep 

5 voltammetry curves show that the PEC properties of the S:MoP/p-Si photocathodes depended 

6 on the S/P powder precursor ratios and it was necessary to determine an optimum S/P ratio.

7

8 Fig. S11. Incident-photon-to-current conversion efficiency measurements of each thin film 

9 catalyst/p-Si photocathode.
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1 Fig. S12. The flat band and band-banding diagrams of (a) n-MoS2 (S)/p-Si, and (b) S:MoP (S/P 
2 =0.33)/p-Si heterojunction photocathodes.
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1 Table S1. Electrochemical catalytic properties of the thin films synthesized on Au electrodes.
2

Electrodes Potential (V)
@ 10 mA/cm2

Potential (V)
@ 20 mA/cm2

Tafel slope
(mV/dec)

bare Au - 0.492 - 0.546 157.83

MoS2 (S) - 0.407 - 0.450 112.36

P:MoS2 (S/P=3) - 0.341 - 0.375 95.67

P:MoS2 (S/P=1) - 0.234 - 0.255 67.34

S:MoP (S/P=0.33) - 0.233 - 0.255 69.98

S:MoP (P) - 0.254 - 0.276 80.89
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1 Table S2. Electrochemical catalytic properties of the thin films synthesized on Au electrodes.
2

No. Sample 
type

Measured
Electrode

Synthesis 
method

η* at
10 mA/cm2

Tafel slope
(mV/dec) Ref.

1 grain type Ti foil thermal CVD 117 mV 50 1

2 nano-
particle

glassy
carbon

air ambient
calcination 125 mV 54 – 83 2

nano-
particle Ti foil solution-phase

synthesis 110 mV 45
3 porous

MoP | S Ti foil thermal 
annealing 90 mV 50

3

4 mirco-
particle

glassy
carbon grinding 150 mV 56 4

5 sponge
(3D)

glassy
carbon

solution 
synthesis 105 mV 126 5

6
MoS

2(1-X)
P

X
 

solid 
solution

glassy
carbon

MoS
2
 + red-P 

solid solution
150 mV 57 6

7 nanosheets glassy
carbon hydrothermal 43 mV 34 7

Au 233 mV 70This
work

S:MoP
thin film p-Si

thermal CVD
(thermolysis) - 207 mV 32

-

3 *Overpotential.
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