Supporting Information

Interface Effect of Mixed Phase Pt/ZrO₂ Catalyst for HCHO Oxidation at Ambient Temperature

Xueqin Yang,^{†,‡} Xiaolin Yu,^{*,†} Mengya Lin, ^{†,‡} Maofa Ge,^{*,†,‡,§} Yao Zhao,[#] Fuyi

Wang^{‡,#}

[†]State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China [‡]University of Chinese Academy of Sciences, Beijing 100049, P. R. China [§]Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, P. R. China [#]Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China

*Email: icecoolyu@iccas.ac.cn; gemaofa@iccas.ac.cn

samples	Surface area	Total pore volume	Pore diameter	Zr 3d _{5/2}	O _{ads} /O _{latt}
	(m^{2}/g)	(cm^{3}/g)	(nm)	(eV)	
ZrO ₂ -M	81.5	0.25	3.4/17.5	182.0	0.6
ZrO ₂ -U	76.1	0.14	5.6	181.9	2.11
ZrO ₂ -N	105.0	0.74	4.3	181.9	2.71
ZrO ₂ -K	87.3	0.15	4.9	181.9	2.88

Table S1 Physical-chemical properties of the ZrO₂ Supports.

Fig. S1 Raman spectra of the as-prepared ZrO_2 suppots.

Fig. S2 Nitrogen adsorption-desorption isotherms of ZrO_2 suppots (a) and Pt/ZrO₂ catalysts (b).

Fig. S3 Pore-size distribution curves of ZrO₂ suppots (a) and Pt/ZrO₂ catalysts (b).

Fig. S4 XPS spectra of ZrO₂ supports: (a) Zr 3d and (b) O 1s.

Fig. S5 HRTEM images for Pt/ZrO_2 -M catalyst with pure monoclinic phase.

Fig. S6 HCHO conversion over ZrO_2 supports. Reaction conditions: 100 ppm of HCHO, 20% O₂, WHSV = 60,000 mL g_{cat}^{-1} h⁻¹.

Scheme S1 The proposed catalytic mechanism of Pt/ZrO₂-M catalyst for HCHO catalytic oxidation.