Significantly enhanced energy storage density for poly(vinylidene fluoride) composites by induced PDA-coated 0.5Ba(Zr_{0.2}Ti_{0.8})O₃-0.5(Ba_{0.7}Ca_{0.3})TiO₃

nanofibers

Qingquo Chi^{1,2,3*}, Tao Ma¹, Yue Zhang¹, Yang Cui^{1,2}, Changhai Zhang¹, Jiaqi Lin¹,

Xuan Wang^{1,2} and Qingquan Lei¹

¹Key Laboratory of Engineering Dielectrics and Its Application, Ministry of

Education, Harbin University of Science and Technology, Harbin 150080, PR China

² School of Electrical and Electronic Engineering, Harbin University of Science and

Technology, Harbin 150080, PR China

³ State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, PR China

Corresponding Author:

*E-mail: qgchi@hotmail.com

EXPERIMENTAL AND METHODS

Fig. S1 The preparation process of nanocomposite.

Preparation of BT nanofibers

The typical procedures for the preparation of BT NFs were carried out as follows. First, 3.8 ml of ethanol, 9.1 ml of acetic acid were added into a 25.0 ml beaker to form a solution. Then, 2.17 g of Ba(OH)₂•8H₂O and 2.48 g of Ti(OCH₂CH₂CH₂CH₃)₄ were added into the above solution in sequence interval half an hour, respectively. After all the reaction elements were fully mixed, 0.80 g of PVP was dissolved into the solution and stirring for more than 24 hours. Later, the precursor was electrospun into the positive and negative voltage was12.0 kV and the injection rate was 0.20 ml/min. Next, the textile was heated to 800 °C for 2 hours with a heating rate of 2 °C per min to obtain BT NFs.

Preparation of CCTO nanofibers

The typical procedures for the preparation of CCTO NFs were carried out as follows. Firstly, 2.6 mmol of $(CH_3COO)_2Cu \cdot H_2O$, 0.9 mmol $Ca(NO)_2 \cdot 4H_2O$ and 1.2 ml $C_{16}H_{36}O_4Ti$ were mixed with 0.4 ml acetic acid and 20.0 ml ethanol in a glove box to form a solution in sequence interval half an hour, respectively. After 30 min stirring, PVP was added to the solution, followed by stirring for 6 h to get a viscous green liquid, which was a precursor solution for electrospinning. Then, the precursor solution was subsequently electrospun with a feeding rate of 0.25 ml/min through a needle (its diameter was 2.3 mm) at 22.5 kV. The distance between the needle tip and collector (a piece of flat aluminium foil) was 18.0 cm. The obtained fibers on the collector were dried at 60°C for 120 min. In order to obtain pure phase nanofibers, the pristine NFs were further calcined at 400 °C for 1 h, then re-calcined at 950 °C for 1 h in oven at a heating rate of 2 °C/min, followed by cooling to room temperature, to obtain CCTO fibers.

Preparation of TiO₂ nanofibers

The typical procedures for the preparation of TiO_2 fibers were carried out as follows. First, 27.0 ml of ethanol and 3.00 g of PVP were added into a 50.0 ml beaker to form a solution (A) by stirring for 6 h. Then, 3.0 ml of tetrabutyl titanate, 7.0 ml of ethanol and 6.0 ml of acetic acid were added into a 25.0 ml beaker to form a solution (B) by stirring for 1 h. Later, the solution (A) and the solution (B) were fully mixed, this was a precursor solution for electro spinning. Then, the precursor solution was subsequently electrospun using standard electrospinning equipment fabricated. The obtained fibers on the collector were dried at crystallizing it by sintering at 500 °C for 4 h, followed by cooling to room temperature to obtain TiO₂ fibers.

Fig. S2 The SEM images of five composites with the same filling of 5 vol.%. (a)BZT-BCT NFs/PVDF, (b)BT NFs/PVDF, (c)CCTO NFs/PVDF, (d)TiO₂ NFs/PVDF, (e)BT NPs/PVDF.

(f)BZT-BCT NFs/PVDF.

From shown in Fig. S3, the electric displacement of PVDF was 4.2 μ C/cm² at 310 kV/mm.

Characteristic of breakdown strength for composites

Fig. S4 Weibull distribution of breakdown strength for the dielectric materials. 5 vol.% CCTO NFs/PVDF, 5 vol.% TiO₂ NFs/PVDF, 5 vol.% BT NPs/PVDF, 5 vol.% BT NFs/PVDF, 5 vol.% BZT-BCT NFs/PVDF composite and PVDF.

Fig. S5 XRD patterns of the *x* vol.% BZT-BCT NFs / PVDF composite (x = 1, 3, 5 and 7). (a) 2θ =10-90 °, (b) 2θ =15-38 °.

Characteristic of breakdown strength for the *x* vol.% BZT-BCT NFs/PVDF composite (*x*=0, 1, 3, 5 and 7)

Fig. S6 Weibull distribution of the breakdown strength for the *x* vol.% BZT-BCT NFs/PVDF composite (x=0, 1, 3, 5 and 7)

Fig. S7 The *D-E* of the *x* vol.% BZT-BCT NFs/PVDF composite (*x* = 1, 3, 5 and 7). (a) *x*=1, (b) *x*=3, (c) *x*=5, (d) *x*=7.

Table S1 Comparison of electric field strength (E) and discharged energy density (U_e)

of this work and the related	dielectric composites	reported in previous	literatures

Samples	E (kV/mm)	U _e (J/cm ³)	η	Ref.
2.1 vol.% BCZT NFs/PVDF	340	5.9	0.53	2017 ¹³
2.1 vol.% BCZT@PATP NFs/PVDF	380	8.2	0.64	201713
2.5 vol.% BST NF-APS/PVDF	380	6.8	0.60	201415
5 vol.% BST NF-APS/PVDF	340	6.0	0.48	201415
7 vol.% BST NF-APS/PVDF	310	5.2	0.44	201415
BT/PVDF	183	4.2	0.59	201516
F3C2BT/PVDF	228	3.8	0.40	201516
F4C2BT/PVDF	242	4.5	0.44	201516
F4CBT/PVDF	272	6.5	0.56	201516
C2BT/PVDF	288	6.7	0.53	201516
BST/P(VDF-HFP)	200	2.2	0.55	201517
PPFPA@BST/P(VDF-HFP)	200	2.2	0.58	201517
2.5 vol.% BST NF/PVDF	300	2.9	0.40	201518
2.5 vol.% F-BST NF/PVDF	390	7.5	0.60	201518
7.5 vol.% F-BST NF/PVDF	310	6.3	0.45	201518
3.6 vol. % BT@AO-DA NFs/PVDF	420	10.6	0.66	201719
8 vol. % BT@AO-DA NFs/PVDF	300	6.5	0.53	201719
Epoxy	100	0.1	0.42	2017^{20}
2.7 vol.% h-BN-RGO/epoxy	100	0.2	0.77	2017 ²⁰

18 vol.% h-BN-RGO/epoxy	100	0.2	0.58	2017 ²⁰
26 vol.% h-BN-RGO/epoxy	100	0.2	0.41	2017 ²⁰
D-h-BT/PVDF	260	4.2	0.49	2014 ²⁴
D-BT/PVDF	249	2.9	0.48	2014 ²⁴
PVDF	249	2.7	0.80	2014 ²⁴
BOPP	400	1.5	0.88	2017 ²⁶
PMMA	250	1.2	0.84	2017 ²⁶
12 wt% BNNS/PMMA	400	3.5	0.85	2017 ²⁶
3.6 vol.% BT nfs/PVDF	350	7.6	0.63	2016 ²⁸
3.6 vol.% BT@Al ₂ O ₃ nfs/PVDF	400	12.2	0.65	2016 ²⁸
10 vol. % sg ₈ CCTO/PC	8	0.02	0.73	201553
10 vol. % TiO ₂ /P(VDF-CTFE)	180	4.7	-	200954
0.4 vol.% MoS ₂ flower/PVDF	200	2.4	0.57	201655
0.4 vol.% MoS ₂ cluster/PVDF	200	1.9	0.63	201655
5 vol.% CCTO NFs/PVDF	120	1.7	0.66	this work
5 vol.% TiO ₂ NFs/PVDF	220	2.9	0.71	this work
5 vol.% BT NPs/PVDF	160	1.8	0.76	this work
5 vol.% BT NFs/PVDF	250	4.6	0.63	this work
5 vol.% BZT-BCT NFs/PVDF	250	5.6	0.64	this work
3 vol.% BZT-BCT NFs/PVDF	310	7.9	0.58	this work

Table S3 shows the comparison of electric field strength (E) and discharged energy density (U_e) of this work and the related dielectric composites reported in previous literatures.