1	Supplementary Information			
2	Synergistic Effect of Bifunctional Polydopamine-Mn ₃ O ₄ Composite			
3	Electrocatalyst for Vanadium Redox Flow Batteries			
4				
5	Ya Ji ^a , Jacelyn Liangshi Li ^a , Sam Fong Yau Li ^{a,b*}			
6				
7	^a Department of Chemistry, Faculty of Science, National University of			
8	Singapore, Singapore 117543, Singapore			
9	^b NUS Environmental Research Institute, National University of			
10	Singapore, Singapore 117411, Singapore			
11				
12				
13	* Corresponding author.			
14	Tel.: +65 65162681; fax: +65 67791691. 18			
15	E-mail address: chmlifys@nus.edu.sg (S.F.Y. Li).			
16				
17	Contents			
18	I. Calculation of diffusion coefficient (D) from Randles-Sevcik equation			
19	II. Calculation of average size of Mn ₃ O ₄ crystal from XRD			
20	III. Figures (Figure S1; Figure S2; Figure S3; Figure S4)			
21	IV. Tables (Table S1)			
22				

I. Calculation of diffusion coefficient (D) from Randles-Sevcik equation
According to Randles-Sevcik equation, for a redox reaction, the peak
current i_p is calculated in Eq. (S1) and Eq. (S2) ¹:

26

27
$$i_p = 2.69 \times 10^5 \text{ n}^{3/2} \text{ A } \text{D}^{1/2} \text{ C } \nu^{1/2} \text{ (reversible system)}$$
 Eq. S1

28
$$i_p = 2.99 \times 10^5 n^{3/2} \alpha^{1/2} A D^{1/2} C v^{1/2}$$
 (irreversible system) Eq. S2

29

where n is the number of electron transfer in redox reaction, A is the area of the working electrode, C is the primary concentration of reactant, D is the diffusion coefficient, V is the scan rate and α is the transfer coefficient (0.5). Since the reaction is quasi-reversible process, the real value of D should be in the range between the calculated values obtained from Eq. S1 and S2. ³⁶ II. Calculation of average size of Mn₃O₄ crystal from XRD

The average size of the Mn_3O_4 crystallites can be calculated by using the Scherrer equation shown below ²:

$$D = \frac{k\lambda}{\beta\cos\theta} \qquad \qquad \text{Eq. S3}$$

40 where D is the mean crystalline size, λ the X-ray wavelength, β is the full 41 width at half-maximum of the peak (in radians), θ the Bragg angle at which 42 the peak is observed, and K the shape factor, which is dependent on the 43 shape of the particle (0.9 is usually used for particles of unknown 44 geometry).

47 Figure S1. N 1s XPS spectrum of PDA modified GF.

50 Figure S2. Loss of Mn from PDA- Mn_3O_4 composite GF.

51

53 composite GF at different spots.

Figure S4. SEM of PDA-Mn₃O₄ composite GF after VRFB single cell test
for 50 cycles.

Positive Electrode type	Current density/ mA cm ⁻²	EE/%	Ref
PDA-Mn ₃ O ₄ GF	50	84.6	this work
PDA-Mn ₃ O ₄ GF	100	73.7	this work
CNF-CNT GF	100	65.6	ref 3
Mn ₃ O ₄ -MWCNT GF	20	84.6	ref 4
MWCNT GF	50	82.0	ref 5
porous carbon GF	100	68.7	ref 6
Water activated GF	50	83.1	ref 7

58 Table S1. Efficiency comparison between this work and literatures ³⁻⁷

59 **Reference**

- A. J. Bard, L. R. Faulkner, J. Leddy and C. G. Zoski, *Electrochemical methods: fundamentals and applications*, Wiley New York, 1980.
- 62 2. A. Ejigu, M. Edwards and D. A. Walsh, *ACS Catalysis*, 2015, **5**, 7122-7130.
- 63 3. M. Park, Y.-j. Jung, J. Kim, H. I. Lee and J. Cho, *Nano letters*, 2013, **13**, 4833-4839.
- 64 4. Z. He, L. Dai, S. Liu, L. Wang and C. Li, *Electrochimica Acta*, 2015, **176**, 1434-1440.
- 65 5. G. Wei, C. Jia, J. Liu and C. Yan, *Journal of Power Sources*, 2012, **220**, 185-192.
- 66 6. J. Liu, Z. Wang, X. Wu, X. Yuan, J. Hu, Q. Zhou, Z. Liu and Y. Wu, *Journal of Power Sources*, 2015,
 67 **299**, 301-308.
- 68 7. D. M. Kabtamu, J.-Y. Chen, Y.-C. Chang and C.-H. Wang, *Journal of Power Sources*, 2017, 341,
 69 270-279.