Electronic Supplementary Information (ESI)

Hierarchical NiCoP nanocone arrays supported on Ni foam as an efficient and

stable bifunctional electrocatalyst for overall water splitting

Junzhi Li,^a Guodong Wei,^a Yukun Zhu,^a Yunlong Xi,^a Xuexue Pan,^aYuan Ji,^a Igor. V. Zatovsky*a and Wei Han*^{a,b}

^aJilin Supercapacitor Engineering Laboratory, College of Physics, Jilin University, Changchun City 130012, P.R. China.

^bInternational Center of Future Science, Jilin University, Changchun City 130012, PR China

Email: zvigo@yndex.ru (Igor. V. Zatovsky*); whan@jlu.edu.cn (Wei Han*)

Table S1

Catalyst	Current collector	Catalyst morphology	Fabrication procedure	Ref.
СоР	сс	NWs	Step 1: Hydrothermally obtained Co(OH)F Step 2:	S1
СоР	GCE	NCs ("urchin-like")	Low-temperature phosphidation Step 1: Hydrothermally obtained Co(CO ₃) _{0.5} (OH)·0.11H ₂ O (at 120°C for 12 h) Step 2:	S2
Co-P film	Cu foil	Films	Low-temperature phosphidation (at 120°C for 12 h) Potentiodynamic electrodeposition	53
Ni ₅ P ₄	NF	TNS ("disklike")	Contact-conversion synthesis (nickel foil and red phosphorus for 1 h at 550°C under an inert atmosphere)	54
Ni ₅ P ₄ -Ni ₂ P	NF	NS	phosphorus heated to 400, 500, 600, or 800°C for 6 h in a flow of N2)	S5
Ni ₈ P ₃	NF	NS	Contact-conversion synthesis (phosphorization at	S6
Ni ₉ S ₈	NF	NS	Contact-conversion synthesis (sulfurization at 250°C).	S6
NiCo ₂ S ₄	NF	NWs	Step 1: Hydrothermally obtained Ni-Co-carbonates hydroxide NWs (at 120°C for 6 h) Step 2: Converted into NiCo ₂ S ₄ NWs (precipitating process in a sodium sulfide environment at 160°C for 8 h)	S7
Ni₂P–CoP	сс	NWAs	Co(OH) ₂ –Ni(OH) ₂ electrodeposited Step 2: Converted into Ni ₂ P–CoP NS (phosphidation at 300°C for	S 8
NiCoP	Ti foil	NPs (nanospheres)	Synthesized using a reverse microemulsion method (tri- n-octylphosphine were used as phosphorus precursors)	S 9
NiCoP	NF	NS	Hydrothermally obtained NiCo precursor (at 100°C for 8 h) Step 2: Converted into NiCoP NS (phosphidation at 300°C for 2 h)	S10
NiCoP	NF	NWAs	Step 1: Hydrothermally obtained NiCo precursor NWAs (at 120 °C for 6 h). Step 2: Converted into NiCoP NWAs (phosphidation at 300°C for 3 h)	This work

Methods of fabrication various nanoforms of phosphide or sulphide on conductive substrates.

Fig S1. Cyclic voltammogram of calibration

Fig S2. Optical photograph (from left to right) of Ni foam, NiCo-CH-NWAs/NF, NiCoP-NWAs/NF.

Fig S3. XRD and SEM images for NiCo-CH-NWAs/NF.

Fig.S4. SEM images of NiCoP nanostructures on foam which growing with different amounts of $CO(NH_2)_2$: (a, d) 25 mmol, (b, e) 15 mmol, (c, f) 10 mmol

Fig S5. a) SEM image for Ni₂P-NSAs/NF; b) XRD patterns of Ni₂P-NSAs/NF; c) SEM image for

Co₂P-NWAs/NF; d) XRD patterns of Co₂P-NWAs/NF

Table S2

Catalyst	Current density (j)	Overpotential	Electrolyte	Reference
	10 mA cm ⁻²	-104 mV		This work
NICOP-NWAS/NF	100 mA cm ⁻²	-197 mV	1.0 IVI KOH	
Co ₂ P-NWAs/NF	10 mA cm ⁻²	-131 mV	1.0 M KOH	This work
Ni ₂ P-NSAs/NF	10 mA cm ⁻²	-152 mV	1.0 M KOH	This work
Co-P film	10 mA cm ⁻²	-94 mV	1.0 M KOH	S3
C-D/CC	10 mA cm ⁻²	-209 mV	4.0.04.001	S1
COP/CC	20 mA cm ⁻²	-250 mV	1.0 M KOH	
	10 mA cm ⁻²	-152 mV		644
COP-NK	20 mA cm ⁻² -171 mV		1.0 M KOH	511
Co phosphide/	10 m 1 cm ⁻²	-380 mV	1.0 М КОН	S12
phosphate	10 mA cm -			
	10 mA cm ⁻²	10 mA cm ⁻² -117 mV		
Ni-P/CP	20 mA cm ⁻²	-150 mV	1.0 M KOH	S13
	100 mA cm ⁻²	-250 mV		
Ni ₂ P/NF	10 mA cm ⁻²	-150 mV	1.0 M KOH	S14
Ni₂P/NF	20 mA cm ⁻²	-205 mV	1.0 M KOH	S15
NiP/Ni	10 mA cm ⁻²	-130 mV	1.0 M KOH	S6
Ni ₂ P	10 mA cm ⁻²	-110 mV	1.0 M KOH	S16
Ni ₂ P-NPs	20 mA cm ⁻²	-250 mV	1.0 M KOH	S17
	10 mA cm ⁻²	-150 mV	1.0.04 // 011	S18
NI ₂ P/NF	20 mA cm ⁻²	-190 mV	T'O IAI KOH	
Ni₅P₄/Ni foil	10 mA cm ⁻²	-150 mV	1.0 M KOH	S4

Comparison of HER activity of the NiCoP-NWAs/NF with that of some recently reported Co(or Ni)- phosphide- based catalysts tested in alkaline media.

Fig S6. Cyclic voltammograms of NiCoP-NWAs/NF (a), Co₂P-NWAs/NF (c), Ni₂P-NSAs/NF (e) and Ni foam (g) at different scan rates in the region of -0.64 – -0.5 V. The current densities of NiCoP-NWAs/NF (b), Co₂P-NWAs/NF (d), Ni₂P-NSAs/NF (f) and Ni foam (h) at -0.57 V versus Hg/HgO with different scan rates.

The active surface area of catalysts can be evaluated by the electrochemical capacitances. The EDLC values of all catalysts can be calculated by the half of the slope of the capacitive current versus scan rate. The EDLC values can be converted into the ECSA using the specific capacitance value for a

standard with 1 cm2 of real surface area. The specific capacitance for a flat surface is about 0.02-0.06 mF cm⁻². The capacitance value of Ni foam is about 0.78 mF cm⁻² larger than a flat surface. Therefore, the capacitance value of Ni foam is considered as the standard. The ECSA values of all electrodes can be calculated by the following formula:

 $specific \ capacitance \ of \ catalysts \\ A_{ECSA} = specific \ capacitance \ of \ Ni \ foam \ per \ cm_{ECSA}^{2}$

The A_{ECSA} of NiCoP-NWAs/NF, Co_P-NWAs/NF and Ni_P-NSAs/NF are 54.2 cm², 44.9 cm² and 34.2 cm²

Fig S7. Polarization curves from normalized to the electrochemical active surface area (ECSA) for HER

Fig S8. The equivalent circuit for fitting the EIS results.

Fig S9. XRD patterns of NiCoP-NWAs/NF before (a) and after (b) 28h HER stability test in 1 M KOH.

Fig S10. XPS spectra of (a) Co 2p, (b) Ni 2p, (c) P 2p and (d) O 2s for NiCoP-NWAs/NF after 28 h HER stability test.

Fig S11. SEM images (a, b) and element mapping of NiCoP-NWAs/NF (c) after 28h HER stability test.

Fig S12. The time-dependent current density curve of NiCoP-NWAs/NF at -0.15 V vs. RHE.

Fig S13. Polarization curves from normalized to the electrochemical active surface area (ECSA) for OER

Table S3

Catalyst	Current density (j)	Overpotential	Electrolyte	Reference
NiCoP-NWAs/NF	20 mA⋅cm ⁻²	270 mV	1.0 M KOH	This work
Co ₂ P-NWAs/NF	20 mA⋅cm ⁻²	306 mV	1.0 M KOH	This work
Ni ₂ P-NSAs/NF	20 mA⋅cm ⁻²	297 mV	1.0 M KOH	This work
Co-P film	10 mA⋅cm ⁻²	345 mV	1.0 M KOH	S 3
CoP/GCE	10 mA⋅cm ⁻²	490 mV	1.0 M KOH	S19
CoP (hollow	10		1.0 M KOH	S20
polyhedrons)	10 mA·cm 2	400 mv		
Co ₂ P-NSAs/NF	50 mA⋅cm ⁻²	330 mV	1.0 M KOH	S11
Co _x P-NP	10 mA⋅cm ⁻²	319 mV	1.0 M KOH	S21
Co phosphide/	10 - ²		1.0 M KOH	S12
phosphate	10 mA·cm 2	300 mv		
Ni ₂ P	10 mA⋅cm ⁻²	400 mV	1.0 M KOH	S16
	10 mA⋅cm ⁻²	190 mV	4.0.04.001	642
NI-P/CP	20 mA⋅cm ⁻²	230 mV	1.0 M KOH	213
Ni ₅ P ₄	10 mA⋅cm ⁻²	330 mV	1.0 M KOH	S4
Ni ₂ P-NSAs/NF	50 mA⋅cm ⁻²	376 mV	1.0 M KOH	S11
NiCoP-NSAs/NF	50 mA⋅cm ⁻²	308 mV	1.0 M KOH	S11

Comparison of OER activity of the NiCoP-CNWAs/NF with that of some recently reported Co(or Ni)- phosphide- based catalysts tested in alkaline media.

Fig S14. The time-dependent current density curve of NiCoP-NWAs/NF at 1.5V vs. RHE

Fig S15. XRD patterns of NiCoP before (a) and after (b) 28h OER stability test in 1 M KOH.

Fig S16. XPS spectra of (a) Co 2p, (b) Ni 2p, (c) P 2p and (d) O 2s for NiCoP-NWAs/NF after 28 h OER stability test.

Fig S17. (a)-(b) SEM images and (c) element mapping of NiCoP-NWAs/NF after 28h OER stability test.

Fig S18. (a) FTIR spectra of NiCoP-NWAs/NF and (b) Raman spectra of NiCoP-NWAs/NF after 28h OER stability test.

References

- [S1] J. Q. Tian, Q. Liu, A. M. Asiri and X. P. Sun, J. Am. Chem. Soc., 2014, 136, 7587.
- [S2] H. C. Yang, Y. J. Zhang, F. Hu and Q. B. Wang, Nano Lett., 2015, 15, 7616.
- [S3] N. Jiang, B. You, M. Sheng and Y. Sun, Angew. Chem. Int. Ed., 2015, 54, 6251.
- [S4] M. Ledendecker, S. K. Calderýn, C. Papp, H. P. Steinrîck, M. Antonietti, and M. Shalom, Angew.Chem. 2015, 127,12538.
- [S5] X. G. Wang, Y. V. Kolen'ko, X. Q. Bao, K. Kovnir and L. F. Liu, Angew. Chem. Int. Ed., 2015, 54, 8188.
- [S6] G. F. Chen, T. Y. Ma, Z. Q. Liu, N. Li, Y. Z. Su and K. Davey, S. Z. Qiao, Adv. Funct. Mater., 2016, 26, 3314.
- [S7] A. Sivanantham, P. Ganesan and S. Shanmugam, Adv. Funct. Mater., 2016, 26, 4661.
- [S8] A. L. Wang, J. Lin, H. Xu, Y. X. Tong and G. R. Li, J. Mater. Chem. A, 2016, 4, 16992.
- [S9] C. D. Wang, J. Jiang, T. Ding, G. H. Chen, W. J. Xu and, Q. Yang, Adv. Mater. Interfaces, 2016, 3, 1500454.
- [S10] Y. J. Li, H. C. Zhang, M. Jiang, Y. Kuang, X. M. Sun and X. Duan, Nano Res., 2016, 9, 2251.
- [S11] Z. P. Huang, Z. Z. Chen, Z. B. Chen, C. C. Lv, M. G. Humphrey and C. Zhang, *Nano Energy*, 2014, **9**, 373.
- [S12] Y. Yang, H. L. Fei, G. D. Ruan and J. M. Tour, Adv. Mater, 2015, 27, 3175.
- [S13] X. G. Wang, W. Li, D. H. Xiong, D. Y. Petrovykh and L. F. Liu, Adv. Funct. Mater., 2016, 26, 4067.
- [S14] B. You, N. Jiang, M. L. Sheng, M. W. Bushan and Y. J. Sun, ACS Catal., 2016, 6, 714.
- [S15] E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis and R. E. Schaak, J. Am. Chem. Soc., 2013, 135, 9267.
- [S16] L. A. Stern, L. G. Feng, F. Song and X. L Hu Energy Environ. Sci., 2015, 8, 2347.
- [S17] L. G. Feng, H. Vrubel, M. Bensimon and X. L. Hu Phys. Chem. Chem. Phys., 2014, 16, 5917.
- [S18] A. L. Han, S. Jin, H. L. Chen, H. X. Ji, Z. J. Sun and P. W. Du J. Mater. Chem. A, 2015, 3, 1941.
- [S19] J. F. Chang, Y. Xiao, M. L. Xiao, J. J. Ge, C. P. Liu and W. Xing, ACS Catal., 2015, 5, 6874.
- [S20] M. J. Liu and J. H. Li, ACS Appl. Mater. Interfaces, 2016, 8, 2158.
- [S21] B. You, N. Jiang, M. L. Sheng, S. Gul, J. Yano and Y. J. Sun Chem. Mater., 2015, 27, 7636.