# **Electronic Supplementary Information (ESI)**

# Enhancing the photocatalytic activity of BiOX (X = Cl, Br, I), $(BiO)_2CO_3$ and $Bi_2O_3$ by modifying their surfaces with polar organic anions, 4-substituted thiophenolates

Benyan Xu<sup>a</sup>, Yang An<sup>a</sup>, Yuanyuan Liu<sup>\*</sup>a, Xiaoyan Qin<sup>a</sup>, Xiaoyang Zhang<sup>a</sup>, Ying Dai<sup>b</sup>, Zeyan

Wang<sup>a</sup>, Peng Wang<sup>a</sup>, Myung-Hwan Whangbo<sup>a,c</sup> and Baibiao Huang<sup>\*a</sup>

a. State Key Laboratory of Crystal Materials, Shandong University, Shandong 250100, P. R.
 China.

E-mail: yyliu@sdu.edu.cn, bbhuang@sdu.edu.cn. Tel: +86-531-8836-6324.

b. School of Physics, Shandong University, Shandong 250100, P. R. China.

c. Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.

#### [1] Synthesis

All reagents used in our experiments are of analytical grade and used directly without further purification.

#### 1. Synthesis of BiOCl and 4CBT@BiOCl

#### 1.1. BiOCl with different facets

BiOCl samples terminated with {001} and {010} facets were synthesized by a hydrothermal procedure. 5 mmol of Bi(NO<sub>3</sub>)<sub>3</sub>·5H<sub>2</sub>O and 5 mmol of KCl were added in 70 mL distilled water at room temperature with continuous stirring. Then the pH value was adjusted to 1 or 6 by adding NaOH solution before transferred into a 100 mL Teflon-lined stainless autoclave. The autoclave was kept at 160 °C for 24 h, and then cooled to room temperature naturally. The obtained products were collected, washed with deionized water and ethanol three times, and dried at 60 °C for 12 h. The BiOCl obtained under pH = 1 has the {001} facet exposed, while the BiOCl obtained under pH = 6 has the {010} facet exposed. Using the same synthetic process as used for BiOCl under pH = 6, BiOBr and BiOI were synthesized by adding KBr and KI, respectively, instead of KCl.

# 1.2. BiOCl with different sizes

BiOCl samples with different thickness were synthesized by a hydrothermal procedure. 5 mmol of  $Bi(NO_3)_3 \cdot 5H_2O$ , 5 mmol of KCl and 0.05 ghexadecyl trimethyl ammonium bromide (CTAB) were added in 70 mL distilled water at room temperature with continuous stirring.

Then the pH value was adjusted to 6 by adding NaOH solution before transferred into a 100 mL Teflon-lined stainless autoclave. The autoclave was kept at 160 °C for 24 h or 48 h. Changing the reaction time is to control the thickness of the particles. Then the obtained products were collected, washed with deionized water and ethanol three times, and dried at 60 °C for 12 h. The obtained BiOCl nanosheets at 160 °C for 24 h and 48 h are about 210 nm and 300 nm in size, and denoted as BiOCl<sub>(210 nm)</sub> and BiOCl<sub>(300 nm)</sub>, respectively, .

4CBT@BiOCl with different facets and sizes were synthesized by a hydrothermal procedure. In a typical procedure, 0.67 mmol BiOCl and 1.33 mmol 4CBT-H were dispersed in 60 mL of deionized water. Subsequently, 20 mL of N,N-Dimethylformamide (DMF) was added into the above suspension. After stirring for 30 min, the obtained suspension was transferred into a 100 mL Teflon-lined stainless autoclave and kept at 120 °C for 24 h, and then cooled to room temperature naturally. The product was collected, washed with deionized water and absolute ethanol for three times, and dried at 60 °C for 12 h.

4-substituted thiophenolates 4-Z-C<sub>6</sub>H<sub>4</sub>S<sup>-</sup> (Z = NO<sub>2</sub>, H, CH<sub>3</sub>, NH<sub>2</sub>) were introduced into BiOX (X = Cl, Br, and I). The synthesis pathways were similar to that for 4CBT@BiOCl. The only difference is that a lower temperature was used for 4-NH<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>SH, which was prepared at 90 °C for 24 h.

#### 2. Synthesis of (BiO)<sub>2</sub>CO<sub>3</sub> and 4CBT@(BiO)<sub>2</sub>CO<sub>3</sub>

#### 2.1. (BiO)<sub>2</sub>CO<sub>3</sub>with different facets

(BiO)<sub>2</sub>CO<sub>3</sub> with dominantly exposed {013} and {001} facets were synthesized using the

hydrothermal method previously reported.<sup>1</sup> In a typical synthesis of  $(BiO)_2CO_3$  with dominantly exposed {013} facets, 2 mmol bismuth citrate and 2 mmol of urea were dissolved in 70 mL deionized water with continuous stirring. After that, the suspension was transferred into 100 mL Teflon-lined stainless autoclave. The autoclave was kept at 180 °C for 24 h. The obtained product was collected, washed with deionized water and absolute ethanol for three times, and dried at 60 °C for 12 h.

In a typical synthesis of  $(BiO)_2CO_3$  with dominantly exposed {001} facet, 2 mmol  $Bi(NO_3)_3 \cdot 5H_2O$  and 6 mmol of urea were dissolved in 70 mL deionized water with continuous stirring. After that, the suspension was transferred into 100 mL Teflon-lined stainless autoclave. The autoclave was kept at 180 °C for 24 h. The obtained product was collected, washed with deionized water and absolute ethanol for three times, and dried at 60 °C for 12 h.

#### 2.2. (BiO)<sub>2</sub>CO<sub>3</sub> with different sizes

 $(BiO)_2CO_3$  with different sizes were prepared by a hydrothermal method. In a typical procedure, 1.67 mmol urea and 10 mmol Bi(NO<sub>3</sub>)<sub>3</sub>·5H<sub>2</sub>O were added into 80 ml water. After being magnetically stirred at room temperature for 0.5 h, the resulting suspension was transferred into a 100 mL a Teflon-lined autoclave and kept at 200 °C for 16 h and 48 h, respectively. The reactors were cooled to room temperature naturally. The resulting products  $(BiO)_2CO_3$  were collected, washed with distilled water and then dried at 60 °C for 12 h.  $4CBT@(BiO)_2CO_3$  was synthesized using the procedure similar to that employed for

4CBT@BiOCl.

#### **3.** Synthesis of α- and β-Bi<sub>2</sub>O<sub>3</sub> and 4CBT@Bi<sub>2</sub>O<sub>3</sub>

α- and β-Bi<sub>2</sub>O<sub>3</sub> phases were synthesized using a precipitation method. Firstly, 2 g Bi(NO<sub>3</sub>)<sub>3</sub>·5H<sub>2</sub>O was dissolved in 20 mL of 1 mol·L<sup>-1</sup> aqueous nitric acid solution and stirred for 10 minutes to get a clear solution. Then 0.1 g CTAB was added into the solution and stirred for another 20 minutes, labelled as solution A. Subsequently, 200 mL 2 mol·L<sup>-1</sup> aqueous NaOH solution was introduced into solution A and ultrasonically vibrated for 20 minutes. The precursor powder was collected, washed and dried at 80 °C for 12 h, and then heat treated in the muffle furnace in the air at 500 °C for 2 h to obtain α-Bi<sub>2</sub>O<sub>3</sub> phase. Meanwhile, solution B was also prepared in the same way as solution A. Then 0.4 g oxalic acid was added into solution B and stirred for 30 minutes. After ultrasonic dispersing for 10 minutes, the precursor was collected, washed and dried at 80 °C for 12 h. Calcination of the precursor powder at 270 °C for 2 h yielded β-Bi<sub>2</sub>O<sub>3</sub> phase.

4CBT@Bi<sub>2</sub>O<sub>3</sub> was prepared in a way similar to that employed for 4CBT@BiOCl.

# 4. Synthesis of 4CBT-Bi<sup>3+</sup> complex

For comparison, a complex of  $Bi^{3+}$  ion with 4CBT was prepared by a hydrothermal method. 1.5 mmol  $Bi(NO_3)_3 \cdot 5H_2O$  and 1.5 mmol 4CBT-H were dispersed in 60 mL of deionized water. After stirring for 30 min, the obtained suspension was transferred into a 100 mL Teflon-lined stainless autoclave and kept at 120 °C for 24 h, and then cooled to room

temperature naturally. The product was collected, washed with deionized water and absolute ethanol for three times, and dried at 60 °C for 12 h.

# 5. Synthesis of 4CBT@Bi<sub>2</sub>S<sub>3</sub>

 $4\text{CBT}@\text{Bi}_2\text{S}_3$  was prepared by a deposition-precipitation method. Because the molar ratio of 4CBT to Bi in 4CBT@BiOC1 measured from the EDS measurements is about 12%,  $4\text{CBT}@\text{Bi}_2\text{S}_3$  with the same ratio is prepared for comparison. In a typical synthetic route, 2.1 mmol of Bi(NO<sub>3</sub>)<sub>3</sub>·5H<sub>2</sub>O was dissolved in 60 mL of ethylene glycol solution. Then 3.1 mmol of Na<sub>2</sub>S was added to the Bi(NO<sub>3</sub>)<sub>3</sub> solution with stirring. After a period of time, 0.25 mmol of 4CBT-H was added to the above solution with constant stirring. Subsequently, the resulting suspension was then kept at 80 °C with stirring for 6 h. Finally, the precipitates  $4\text{CBT}@\text{Bi}_2\text{S}_3$ with ~12% of molar percentage ratio of 4CBT to Bi were collected, washed and dried at 60 °C in air. For comparison, pure Bi<sub>2</sub>S<sub>3</sub> was also synthesized without 4CBT-H.

# 6. Synthesis of other common photocatalysts

g-C<sub>3</sub>N<sub>4</sub> was synthesized using a calcination method. Melamine was calcined in a tube furnace (GSL-1100X, Hefei KJ Group) at 500 °C for 4 h in air to obtain g-C<sub>3</sub>N<sub>4</sub>. N-doped P25 was synthesized by calcining P25 at 500 °C for 10 h in nitrogen.

WO<sub>3</sub> was prepared by heating H<sub>2</sub>WO<sub>4</sub> at 300 °C for 1h. To obtain yellow H<sub>2</sub>WO<sub>4</sub>, a certain amount of sodium tungstate dihydrate (Na<sub>2</sub>WO<sub>4</sub>·2H<sub>2</sub>O) was dissolved into ethanolwater solution (1:2, v/v). Then the pH of the Na<sub>2</sub>WO<sub>4</sub> solution was adjusted to 2.0 by dilute HNO<sub>3</sub> solution (0.1 mol/L) at 60 °C. After being stirring for 6 h, H<sub>2</sub>WO<sub>4</sub> precipitate was collected.

Cu<sub>2</sub>O was synthesized using a precipitation method. Certain stoichiometric amounts of copper sulfate pentahydrate (CuSO<sub>4</sub>·5H<sub>2</sub>O) and NaOH were added into 100 mL water and stirred for 30 min to obtain a light blue Cu(OH)<sub>2</sub> suspension. Then, 50 mL ascorbic acid was added into the Cu(OH)<sub>2</sub> suspension quickly. After stirring for 30 min, the light blue suspension changed to orange suspension. The resulting product was collected, washed and dried at 60 °C for 12 h in vacuum oven to obtain Cu<sub>2</sub>O.

# [2] Characterization

### **1. Structure and property**

The crystalline structures of the products were examined by XRD analysis at room temperature on a Bruker AXS D8 advanced X-ray powder diffractometer with Cu K $\alpha$  radiation ( $\lambda$ = 1.54056 Å). The morphologies of the samples were determined by SEM (Hitachi S-4800 microscope) and high-revolution transmission electron microscope (HRTEM) (JEOL JEM-2100). The Brunauer–Emmett–Teller (BET) surface areas of the samples were measured by a Micromeritics ASAP2020 analyzer at liquid nitrogen temperature. UV-visible DRS analysis was carried out using a Shimadzu UV 2550 recording spectrophotometer, which was equipped with an integrating sphere and BaSO<sub>4</sub> was used as a reference. XPS analysis was carried out on a Thermo Fisher Scientific Escalab 250 spectrometer and C 1s (284.6 eV) was used to calibrate the peak positions. Fourier transform infrared (FT-IR) spectra were evaluated by the FT-IR spectrometer (Nicolet Nexus 670). The time-resolved fluorescence spectra were obtained on Edinburgh FLS920 PL. The decay curve

was fitted by using a biexponential decay function to deconvolute the instrument response function. The average lifetime was calculated by using the following relation:  $\langle \tau_{av} \rangle = a_1 \tau_1 + a_2 \tau_2$ , ( $\tau_1$  and  $\tau_2$  are the lifetime,  $a_1$  and  $a_2$  are normalized pre-exponential factors), The excitation source is a 377.8 nm laser. The second harmonic generation (SHG) signal from the sample was selectively detected by a photomultiplier tube (PMTH-S1V1-CR131), averaged by a fast-gated integrator and boxcar averager (Stanford Research Systems), and then recorded by data acquisition software. All experiments were performed at room temperature.

# 2. Zeta potentials

The Zeta potentials of the photocatalysts were investigated, and the results are summarized in **Table S1**, which shows that the Zeta potentials of BiOCl,  $(BiO)_2CO_3$  and  $Bi_2O_3$  are more negative after the surface modification of polar 4CBTs. These results support our conclusion that 4CBT modification of these Bi-based semiconductors creates a polar surface at the interface.

| BiOCl <sub>{001}</sub> | 4CBT@BiOCl <sub>{001}</sub> | BiOCl <sub>{010}</sub> | 4CBT@BiOCl <sub>{010}</sub> | 4CBT-H |
|------------------------|-----------------------------|------------------------|-----------------------------|--------|
| -28.1                  | -32.6                       | -26                    | -34.2                       | -10.5  |

 Table S1.
 Zeta potential (mV) of various photocatalysts

| BOC <sub>(100nm)</sub> | 4CBT@BOC(100nm) | BOC <sub>(200nm)</sub> | 4CBT@BOC(200nm) | 4CBT-H |
|------------------------|-----------------|------------------------|-----------------|--------|
| -24                    | -29.7           | -22.3                  | -31             | -10.5  |

| α-Bi <sub>2</sub> O <sub>3</sub> | 4CBT@α-Bi <sub>2</sub> O <sub>3</sub> | β-Bi <sub>2</sub> O <sub>3</sub> | 4CBT@β-Bi <sub>2</sub> O <sub>3</sub> | 4СВТ-Н |
|----------------------------------|---------------------------------------|----------------------------------|---------------------------------------|--------|
| -27.5                            | -29.1                                 | -19.4                            | -28.7                                 | -10.5  |

#### 3. Photocatalytic properties

The photocatalytic performance of the as-prepared products was evaluated by rhodamine-B (RhB) and methylene blue (MB) degradation at room temperature. In a typical process, 50 mg catalyst was dispersed in 100 mL RhB (or MB) solution (20 mg L<sup>-1</sup>) and stirred magnetically for 1-2 h in the dark to establish an adsorption-desorption equilibrium. The concentration of catalyst-free RhB solution collected at irradiation time intervals was analyzed on a UV-vis spectrophotometer (Shimadzu UV 2550) with deionized water as a reference sample.

Photocatalytic oxygen evolution reaction was carried out in a top-irradiation vessel connected to a glass-enclosed gas circulation system. In a typical procedure, 50 mg of catalyst was suspended in 50mL aqueous solution containing 50 mg AgNO<sub>3</sub> with constant stirring. The reaction temperature was maintained at 5 °C. The amount of  $O_2$  evolved was determined by using a gas chromatograph (Techcomp GC7890 II).

The source for UV-Vis light was a 300W Xe arc lamp. The visible light ( $\lambda \ge 420$  nm) was obtained using a UV-cutoff filter. The ultraviolet light source is a 10W H-UV lamp with two wavelengths (185 and 254 nm).

#### 4. Electrochemical measurements

The electrochemical measurements were carried out using a 263A Princeton Applied Research (PAR) potentialstat/galvanostat. The photocurrents were measured by an electrochemical analyzer in a standard three-electrode system, with the catalyst-coated FTO glass as the working electrode, a Pt foil as a counter electrode, and a saturated Ag-AgCl

electrode (saturated KCl) as the reference electrode. The light source was a 300W Xe arc lamp. The electrolyte was 0.1M LiCl acetonitrile solution.

#### 5. Calculations of the rate constant for photocatalytic degradation reactions:

The results of photodegradation reactions can be summarized by determining the apparent rate constants,  $k_{app}$ , which is describe in terms of the apparent pseudo-first-order kinetics equation (1)<sup>2,3</sup>

$$\ln\frac{C}{C_0} = -k_{app}t \tag{1}$$

where  $k_{app}$  is the rate constant (min<sup>-1</sup>), C is the concentration (mg·L<sup>-1</sup>) of RhB in aqueous solution at time t, and C<sub>0</sub> is the initial concentration of RhB at t = 0.

## 6. 4CBT@BiOCI: Facet-dependent activity

SEM images reveal that  $BiOCl_{\{010\}}$  is composed of nanosheets with width of 1~3 µm and thickness of 220~300 nm (**Fig. S1a, b**). The SAED pattern from TEM of  $BiOCl_{\{010\}}$  displays (200) and (111) planes, which can be indexed as the [010] zone of tetragonal BiOCl (**Fig. S1c**). BiOCl\_{\{001\}} consists of nanosheets with width of 2~3.5 µm and thickness of 350~400 nm (**Fig. S1d, e**). SAED patterns from TEM of BiOCl\_{\{001\}} displays (102) and (002) planes, which can be indexed as the [001] zone of tetragonal BiOCl (**Fig. S1f**).



Fig. S1 (a, b) SEM images of  $BiOCl_{\{010\}}$ , and (c) the corresponding SAED pattern of  $BiOCl_{\{010\}}$  (the inset is TEM image). (d, e) SEM images of  $BiOCl_{\{001\}}$ , and (f) the corresponding SAED pattern of  $BiOCl_{\{001\}}$  (the inset is TEM image).



Fig. S2 XPS survey spectra of (a)  $BiOCl_{\{010\}}$  and  $4CBT@BiOCl_{\{010\}}$ , and those of (b)  $BiOCl_{\{001\}}$  and  $4CBT@BiOCl_{\{001\}}$ .



Fig. S3 FT-IR spectra of different samples in the wavenumber regions of (a)  $400 \sim 2000$  cm<sup>-1</sup> and (b)  $2000 \sim 4000$  cm<sup>-1</sup>.

In **Fig. S3**, both 4CBT@BiOCl<sub>{001}</sub> and 4CBT@BiOCl<sub>{010}</sub> have the same peaks, while they display some typical peaks of BiOCl and 4CBT, in good agreement with the reported results<sup>4-9</sup>. However, compared with the FT-IR spectrum of 4CBT, the three characteristic peaks of 4CBT@BiOCl, namely, the v(C-S) stretching vibrational peak at 685 cm<sup>-1</sup>, the  $\omega$ (CO2) bending vibrational peak at 711 cm<sup>-1</sup>, and v(C-ph) vibrational peak at 758 cm<sup>-1</sup>, shift respectively ~8.1, ~9.8, and ~15 cm<sup>-1</sup> towards a higher wavenumber in the spectra of 4CBT@BiOCl. The characteristic  $\delta$ (SH) peak at ~2558 cm<sup>-1</sup> disappears because of the deprotonation. Moreover, the spectra of 4CBT@BiOCl exhibit a broad peak region (1331.7~1416.2 cm<sup>-1</sup>), in which the typical peak of Bi<sub>2</sub>S<sub>3</sub> at ~1385 cm<sup>-1</sup> and the peak of 4CBT at 1401.9 cm<sup>-1</sup> overlap. In addition, the stretching vibration peak of Bi-O bond (527 cm<sup>-1</sup>) in 4CBT@BiOCl becomes weaker than that in BiOCl. All the above changes are mainly due to the formation of Bi-S bonds.



Fig. S4 The values of the apparent rate constant  $k_{app}$  for the photocatalytic degradation of RhB under UV light irradiation over BiOCl<sub>{001}</sub>, BiOCl<sub>{010}</sub>, 4CBT@BiOCl<sub>{001}</sub> and 4CBT@BiOCl<sub>{010}</sub>.

# 7. 4CBT@(BiO)<sub>2</sub>CO<sub>3</sub> nanosheets: Size-dependent activity



Fig. S5 XPS survey spectra of 4CBT@BOC<sub>(100nm)</sub> and BOC<sub>(100nm)</sub>.



Fig. S6 The values of the apparent rate constant  $k_{app}$  for RhB photocatalytic degradation process under UV light irradiation over BOC<sub>(100nm)</sub>, BOC<sub>(200nm)</sub>, 4CBT@BOC<sub>(100nm)</sub> and 4CBT@BOC<sub>(200nm)</sub>.



# 8. 4CBT@Bi<sub>2</sub>O<sub>3</sub>: Phase-dependent activity

**Fig. S7** (a, b) XPS spectra of the Bi 4f state of  $4\text{CBT}@\alpha-\text{Bi}_2\text{O}_3$  and  $\alpha-\text{Bi}_2\text{O}_3$ ; (c, d) XPS spectra of  $4\text{CBT}@\beta-\text{Bi}_2\text{O}_3$  and  $\beta-\text{Bi}_2\text{O}_3$ .

XPS analysis was carried out to confirm the existence of Bi-S bonds formed between  $Bi_2O_3$  and 4CBT. In the survey spectra of 4CBT@α-Bi<sub>2</sub>O<sub>3</sub> (**Fig. S7a**) and 4CBT@β-Bi<sub>2</sub>O<sub>3</sub> (**Fig. S7c**), Bi, O and S elements are detected, respectively. The binding energy located at 227.3 eV is assigned to the S 2s state. More importantly, the Bi 4f states of 4CBT@α-Bi<sub>2</sub>O<sub>3</sub> obviously shift about 0.48 eV towards a higher binding energy with respect to that of α-Bi<sub>2</sub>O<sub>3</sub> (**Fig. S7b**), while the Bi 4f states of 4CBT@β-Bi<sub>2</sub>O<sub>3</sub> have a shift of 0.4 eV towards a higher

binding energy compared with that of  $\beta$ -Bi<sub>2</sub>O<sub>3</sub> (**Fig. S7d**). These shifts are due to the formation of Bi-S bonds. However, these results are different from those found for 4CBT@BiOCl and 4CBT@(BiO)<sub>2</sub>CO<sub>3</sub> because, in the latter, the Bi 4f states shift towards a lower binding energy. The shift of the Bi 4f states in different directions may arise from the fact that the Bi-O bond energy in Bi<sub>2</sub>O<sub>3</sub> (342.3kJ/mol)<sup>10</sup> is stronger than that of the Bi<sub>2</sub>O<sub>2</sub><sup>2+</sup> slabs in BiOCl (337.2 kJ/mol).<sup>11</sup> This difference might give rise to different electron distributions around Bi<sup>3+</sup> ions in the O-Bi-S bonds after the surface-modification with 4CBT on Bi<sub>2</sub>O<sub>3</sub> and BiOCl.



Fig. S8 (a, b) FT-IR spectra of  $4CBT@\alpha-Bi_2O_3$  and  $\alpha-Bi_2O_3$ . (c, d) FT-IR spectra of  $4CBT@\beta-Bi_2O_3$  and  $\beta-Bi_2O_3$ .

FT-IR spectra also verify the presence of Bi-S bonds, as shown in **Fig. S8**. The results are similar to those obtained for 4CBT@BiOC1. 4CBT@ $\alpha$ -Bi<sub>2</sub>O<sub>3</sub> and 4CBT@ $\beta$ -Bi<sub>2</sub>O<sub>3</sub> consist of the typical peaks observed for  $\alpha$ - and  $\beta$ -Bi<sub>2</sub>O<sub>3</sub><sup>12</sup> and 4CBT-H.<sup>6-9</sup> Compared with the FT-IR spectrum of 4CBT-H, the characteristic  $\delta$ (SH) peak at about 2558 cm<sup>-1</sup> disappears (**Fig. S8a**). The three characteristic peaks of 4CBT@ $\alpha$ -Bi<sub>2</sub>O<sub>3</sub>, namely, the v(C-S) stretching vibrational peak at 685 cm<sup>-1</sup>, the  $\omega$ (CO2) bending vibrational peak at 711 cm<sup>-1</sup>, and v(C-ph) vibrational peak at 755 cm<sup>-1</sup>, shift respectively about 8.1, 9.8, and 15 cm<sup>-1</sup> towards a higher wavenumber (**Fig. S8b**). Moreover, the band at 1389 cm<sup>-1</sup> assigned to the v(Bi-O) stretching vibrational peak in  $\alpha$ -Bi<sub>2</sub>O<sub>3</sub> shifts to 1399 cm<sup>-1</sup> in 4CBT@ $\alpha$ -Bi<sub>2</sub>O<sub>3</sub>. The above changes are due mainly to the formation of Bi-S bonds in 4CBT@ $\alpha$ -Bi<sub>2</sub>O<sub>3</sub> at about 1385 cm<sup>-1</sup> and the peak of 4CBT at 1402 cm<sup>-1</sup> overlap. 4CBT@ $\beta$ -Bi<sub>2</sub>O<sub>3</sub> exhibits the result similar to those of 4CBT@ $\alpha$ -Bi<sub>2</sub>O<sub>3</sub>



**Fig. S9** FT-IR spectra of  $4\text{CBT}@\alpha-\text{Bi}_2\text{O}_3$  and  $4\text{CBT}@\beta-\text{Bi}_2\text{O}_3$  before and after the visible light irradiation (> 8h) for the degradation of RhB.



9. Effect of the Bi-S bond on the light absorption and photocatalytic activity

**Fig. S10** (a) FT-IR spectra and (b) DRS spectra of the 4CBT-Bi<sup>3+</sup> complex. (c) Photocatalytic degradation of RhB over the complex of the 4CBT-Bi<sup>3+</sup> complex under visible light irradiation.



Fig. S11 Photodegradation of RhB over  $4CBT@Bi_2S_3$  and  $4CBT@BiOCl_{\{001\}}$  under visible light irradiation.



# 10. Photocatalytic and optical properties of other common photocatalysts

Fig. S12 (a) UV-Vis spectra of a RhB aqueous solution in the presence of  $g-C_3N_4$  under visible light irradiation as a function of the irradiation time. (b) UV-Vis absorption spectra of  $g-C_3N_4$ .



Fig. S13 (a) UV-Vis spectra of a RhB aqueous solution in the presence of  $WO_3$  under visible light irradiation as a function of the irradiation time. (b) UV-Vis absorption spectra of  $WO_3$ .



Fig. S14 (a) UV-Vis spectra of a RhB aqueous solution in the presence of  $Cu_2O$  under visible light irradiation as a function of the irradiation time. (b) UV-Vis absorption spectra of  $Cu_2O$ .



**Fig. S15** (a) UV-Vis spectra of a RhB aqueous solution in the presence of N-doped P25 under visible light irradiation as a function of the irradiation time. (b) UV-Vis absorption spectra of N-doped P25.

# References

1 H. W. Huang, J. J. Wang, F. Dong, Y. X. Guo, N. Tian, Y.H. Zhang and T. R. Zhang, *Cryst. Growth Des.* 2015, **15**, 534.

- 2 K. Dai, L. H. Lu, C. H. Liang, Q. Liu and G. P. Zhu, *Appl. Catal. B: Environ.*, 2014, 156-157, 331.
- 3 Y. Hong, C. G. Tian, B. J. Jiang, A. P. Wu, Q. Zhang, G. H. Tian and H. G. Fu, *J. Mater. Chem. A*, 2013, **1**, 5700.
- 4 Q. B. Li, X. Zhao, J. Yang, C. J. Jia, Z. Jin and W. L. Fan, *Nanoscale*, 2015, 7, 18971.
- 5 X. Y. Gao, X. C. Zhang, Y. W. Wang, S. Q. Peng, B. Yue and C. M. Fan, *Chem. Eng. J.*, 2015, 263, 419.
- 6 Y. Zhou, H. Zhao, C. Li, P. He, W. B. Peng, L. F. Yuan, L. X. Zeng and Y. J. He, *Talanta*, 2012, 97, 331.
- 7 R. Li, H. M. Lv, X. L. Zhang, P. P. Liu, L. Chen, J. B. Cheng and B. Zhao, Spectrochim. Acta, Part A: Mol. Biomol. Spectro., 2015, 148, 369.
- 8 Y. Zhou, H. Zhao, Y. J. He, N. Ding and Q. Cao, *Colloids Surf., A: Physicochem. Eng.* Aspects, 2011, **391**, 179.
- 9 P. K. Sudeep, S. T. S. Joseph and K. G. Thomas, J. Am. Chem. Soc., 2005, 127, 6516.
- 10 M. Mohsen, E. Gomaa, M. S. Al-Kotb, M. Abdel-Baki and N. Fathy, J. Non-Cryst. Solids, 2016, 436, 1.
- 11 L. Q. Ye, L. Zan, L. H. Tian and T. Y. Peng, Chem. Commun., 2011, 47, 6951.
- Y. H. Yan, Z. X. Zhou, Y. Cheng, L. L. Qiu, C. P. Gao and J. G. Zhou, *J. Alloys Compd.*, 2014, 605, 102.