Magnetic Fe-Co crystals doped hierarchical porous carbon fibers for removal of organic pollutants

Zhigao Zhu^a, Chenghan Ji^a, Lingling Zhong^a, Shuang Liu^b, Fuyi Cui^a, Hongliang Sun^{b*}, Wei Wang^{a*}

^a School of Municipal and Environmental Engineering, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, P. R. China. E-mail: wangweirs@hit.edu.cn

^b School of Materials Science and Engineering, Yunnan Key Laboratory for Micro/Nano Material & Technology, Yunnan University, Kunming 650091, P. R. China. E-mail: hlsun@aliyun.com

Fig. S1 FE-SEM images of composite fibers fabricated with various molar ratios of Fe and Co metal precursor. (1) 1:0, (2) 2:1 and (3) 0:1, respectively. (a) precursor composite fiber, (b) cured composite fiber, (c) cured composite fiber directly carbonized and (d) cured composite fiber carbonized after activation.

Fig. S2 Raman spectra of FeCo₂@PAN/ BA-a after carbonazation without and with activation process.

Fig. S3 TEM images of (a) Fe@APCFs and (b) Co@APCFs.

Fig. S4 TGA curves of carbon fibers from carbonazation without and with metal salts.

Fig. S5 Time dependence of $Fe_xCo_y@PCNFs$ (a) without and (b) with PMS for MeB removal. ([MeB] =20 mg/L, [adsorbent, catalyst dosage] =0.1 g/L, [PMS dosage] =0.5 g/L, pH=7, T=20°C)

Fig. S6 Time dependence of $FeCo_2@APCFs$ (a) without and (b) with PMS for MeB removal. ([MeB] =100 mg/L, [adsorbent, catalyst dosage] =0.1 g/L, [PMS dosage] =0.5 g/L, pH=7, T=20 °C)

Fig. S7 5,5-Dimethyl-pyrroline-N-oxide (DMPO) spin-trapping EPR spectra of FeCo₂@APCFs/ MeB / water system and FeCo₂@APCFs/ methanol system, respectively. [DMPO=10 mM]

Fig. S8 (a) XPS survey spectra, (b) C1s spectrum and (c) N1s spectra of $FeCo_2@APCFs$ before and after use.

	5 1	1		
Samples	$S_{\rm BET}{}^a ({ m m}^2~{ m g}^{-1})$	S_{micro}^{b} (m ² g ⁻¹)	V_{total}^{c} (cm ³ g ⁻¹)	V_{micro}^{d} (cm ³ g ⁻¹)
PCNs100	500	260	0.28	0.14
APCNs100	2337	1190	1.21	0.57
FeCo ₂ @APCFs	2085	1051	1.12	0.45

Table S1 The summary of pore structure parameters of relevant carbon fibers.

^{*a*} Total surface area was calculated by the Brunauer-Emmett- Teller (BET) method. ^{*b*} Microporous surface area was calculated by the Bareet, Joyner and Halenda (BJH) method. ^{*c*} SF_{micro} indicates the surface area fraction of microporous. ^{*d*} the total pore volume was estimated was calculated at $P/P_0=0.99$. ^{*d*} Vmicro was calculated by the HK method.

Table S2 Comparison of the properties of FeCo₂/APCFs with the literature results.

PMS activator	Pollutant	Concentration	Activator	Concentration	Т	Time	Conv.	Ref
		of pollutant	in	of PMS (g/L)	(°C)	(min)	(%)	
		(mg/L)	solution					
			(g/L)					
MnFe ₂ O ₄ -rGO	MeB	20	0.05	0.5	25	40	~100	1
OMS-2	MeB	20	0.25	0.25	-	15	~100	2
rGO900	MeB	10	0.2	0.61	-	10	~100	3
CNT	Phenol	9.4	0.1	1.14	-	60	~92	4
α-MnO ₂	Phenol	25	0.4	2	25	30	~100	5
Fe ⁰ /Fe ₃ C@CS	Phenol	20	0.1	2	25	30	~100	6
LaCoO ₃	Phenol	20	0.3	0.03	-	90	~100	7
A-	MeB	10	0.1	0.5	25	15	~100	8
Fe@CNF1100								
A-	Phenol	10	0.1	0.5	25	15	~100	8
Fe@CNF1100								
FeCo ₂ @APCFs	MeB	20	0.1	0.5	20	7	~100	This
								study
FeCo ₂ @APCFs	Phenol	20	0.1	0.5	20	20	~100	This
								study

References

- 1. Y. Yao, Y. Cai, F. Lu, F. Wei, X. Wang and S. Wang, J. Hazard Mater; 2014, 270, 61-70.
- 2. S. Luo, L. Duan, B. Sun, M. Wei, X. Li and A. Xu, Appl. Catal. B: Environ; 2015, 164, 92-99.
- 3. X. Duan, H. Sun, J. Kang, Y. Wang, S. Indrawirawan and S. Wang, ACS Cata, 2015, 5, 4629-4636.
- 4. H. Lee, H. J. Lee, J. Jeong, J. Lee, N.-B. Park and C. Lee, Chem. Eng. J; 2015, 266, 28-33.
- 5. E. Saputra, S. Muhammad, H. Sun, H. M. Ang, M. O. Tade and S. Wang, *Environ. Sci. Technol*; 2013, **47**, 5882-5887.
- Y. Wang, H. Sun, X. Duan, H. M. Ang, M. O. Tadé and S. Wang, *Appl. Catal. B-Environ*, 2015, 172, 73-81.
- S. B. Hammoudaa, F. Zhaoa, Z. Safaeia, V. Srivastavaa, D. L. Ramasamya, S. Iftekhara, S. kalliolaa, M. Sillanpääa, *Appl. Catal. B-Environ*, 2017, 215, 60-73.
- Z. Zhu, Y. Xu, B. Qi, G. Zeng, P. Wu, G. Liu, W. Wang, F. Cui, Y. Sun, *Environ. Sci.: Nano*, 2017, 4, 302-306.