Supplementary information

Synergistic Effect of 2D Ti₂C and g-C₃N₄ for efficient photocatalytic hydrogen production

Mengmeng Shao,^a Yangfan Shao,^{a b} Jianwei Chai,^c Yuanju Qu,^{a d} Mingyang Yang,^{a e} Zeli Wang,^f Ming Yang,^c Weng Fai Ip,^g Chi Tat Kwok,^{d a} Xingqiang Shi,^b Zhouguang Lu,^e Shijie Wang,^c Xuesen Wang,^f and Hui Pan^a*

^a Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, P. R. China ^b Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong, P. R. China

^c Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology, and Research), Singapore

^d Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macao SAR, P. R. China

^e Shenzhen Key Laboratory of Hydrogen Energy, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, P. R. China

^fDepartment of Physics, National University of Singapore, Singapore

^g Chemistry Supporting Group, Faculty of Science and Technology, University of Macau, Macao SAR, P. R. China

* Corresponding Author: huipan@umac.mo; Tel: (853)88224427; Fax: (853)88222426

Fig. S1 XRD patterns of Ti_2C and Ti_2AlC .

Fig. S2 SEM images of (a) Ti_2AlC and (b) Ti_2C . EDX elemental mapping for (c) Ti_2AlC and (d) Ti_2C .

Fig. S3 (a) TG curves of $g-C_3N_4$ and TiCN and (b) the enlarged views of (a) in a range of 700-800 °C.

Fig. S4 XPS spectra of N 1s and O 1s for g-C₃N₄, TiCN-0.4 and TiCN-1.0.

Fig. S5 N_2 adsorption-desorption isotherms of g-C₃N₄, TiCN-0.1, TiCN-0.2, TiCN-0.4,

Fig. S6 Photocatalytic hydrogen production rates of g-C₃N₄, TiCN-0.4, TiCN-0.4mixed (Ti₂C and g-C₃N₄ physical mixing), Ti₂AlC/g-C₃N₄-0.4 and no catalyst.

Fig. S7 Recycling studies of hydrogen production over $g-C_3N_4$ (a) and Ti_2C (b). The reaction system was purged with N_2 before every cycling.

Fig. S8 XRD patterns of TiCN-0.4 and after cycling 10 times.

Fig. S9 SEM images of TiCN-0.4: as prepared (a, b) and after cycling 10 times (c, d).

Fig. S10 EDS elemental mapping for TiCN-0.4: a) as prepared and b) after cycling 10 times; XPS spectra of O 1s for TiCN-0.4: as prepared and after cycling 10 times. Notes: the high percentage of Cu in the EDS mapping of TiCN-0.4 is attributed to the Cu substrate.

Fig. S11 UV-vis adsorption spectra of TiCN-0.4: as prepared and after cycling 10 times.

Photocatalyst	Amount of photocatalyst (mg)	Co-catalyst	Loading method	Optimum loading	Light source	Hydrogen production rate (µmol/h/g)	Reference
TiCN-0.4	50	Ti ₂ C	Calcination	0.4 wt%	solar simulator AM 1.5	950	This work
$Pt/g-C_3N_4$	50	Pt	Adsorption-deposition	1 wt%	350 W Xe lamp	588	1
$MoS_x/g-C_3N_4$	50	MoS _x	Adsorption-in situ transformation	3 wt%	four low-power LEDs	273.1	2
CoP/g-C ₃ N ₄	100	CoP	Grinding	0.25 wt%	300 W Xe lamp	474.4	3
Ni/g-C ₃ N ₄	10	Ni	Photodeposition	7.4 wt%	300 W Xe lamp	4318	4
$Cu/g-C_3N_4$	50	Cu	Milling	3 wt%	Xe lamp	20.5	5
Ag_2S/g - C_3N_4	50	Ag ₂ S	Photodeposition	5 wt%	Four low power UV-LEDs	200	6
NiS/g-C ₃ N ₄	100	NiS	Hydrothermal	1.1 wt%	300 W Xe lamp	482	7
$Ni_2P/g-C_3N_4$	20	Ni ₂ P	Hydrothermal	0.4 wt%	300 W Xe lamp	183.6	8
$WS_2/g-C_3N_4$	50	WS_2	Impregnation-sulfidation	0.3 wt%	300 W Xe lamp	240	9
Graphene/g-C ₃ N ₄	80	Graphene	Impregnation-chemical reduction	1.0 wt%	350 W Xe lamp	451	10
Carbon nanotubes/g-C ₃ N ₄	100	Carbon nanotubes	Heat treatment	0.5 wt%	300 W Xe lamp	42	11

Table S1 Comparison of	the photocataly	tic H ₂ production	rate for $g-C_3N_4$	-based photocatal	vsts loading	different co-cataly	vsts
							/~-~

Computational method

The density functional theory (DFT) calculations were performed by using the Vienna ab initio simulation package (VASP).^{12,13} To describe the valence and core states, plane wave basis set and projector augmented wave (PAW) potentials were employed with a kinetic energy cutoff of 500 eV.¹⁴ The Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA) exchange and correlation functional was used.¹⁵ For structure relaxation, both lattice constants and atom coordinates were optimized until the forces converged to less than 0.02 eV/Å. The Monkhorsk- Pack k-point sampling of g-C₃N₄ and Ti₂C were 5 × 5 and 15 × 15, respectively. For density of states (DOS) calculations, Gaussian smearing was 0.05 eV and Monkhorsk-Pack k-point sampling of g-C₃N₄ and Ti₂Cwere 7 × 7 and 21 × 21. The vacuum layer was 20 Å in vertical direction.

Fig. S12 The structural models of Ti_2AlC , Ti_2C and g- C_3N_4 .

Fig. S13 The calculated band structure of (a) $g-C_3N_4$ and (c) TiCN; and the total density of states of (b) $g-C_3N_4$ and (d) TiCN.

References:

- 1. S. Cao, J. Jiang, B. Zhu and J. Yu, Phys. Chem. Chem. Phys., 2016, 18, 19457-19463.
- 2. H. Yu, P. Xiao, P. Wang and J. Yu, Appl. Catal. B Environ., 2016, 193, 217-225.
- S. S. Yi, J. M. Yan, B. R. Wulan, S. J. Li, K. H. Liu and Q. Jiang, *Appl. Catal. B Environ.*, 2017, 200, 477-483.
- L. Kong, Y. Dong, P. Jiang, G. Wang, H. Zhang and N. Zhao, J. Mater. Chem. A, 2016, 4, 9998-10007.
- M. Fan, C. Song, T. Chen, X. Yan, D. Xu, W. Gu, W. Shi and L. Xiao, *RSC Adv.*, 2016, 6, 34633-34640.
- 6. D. Jiang, L. Chen, J. Xie and M. Chen, Dalton T., 2014, 43, 4878-4885.
- 7. J. Hong, Y. Wang, Y. Wang, W. Zhang and R. Xu, ChemSusChem, 2013, 6, 2263-2268.
- 8. Y. Chen and Z. Qin, Catal. Sci. Technol., 2016, 6, 8212-8221.
- 9. Y. Hou, Y. Zhu, Y. Xu and X. Wang, Appl. Catal. B- Environ., 2014, 156, 122-127.
- 10. Q. Xiang, J. Yu and M. Jaroniec, J. Phys. Chem. C, 2011, 115, 7355-7363.
- A. Suryawanshi, P. Dhanasekaran, D. Mhamane, S. Kelkar, S. Patil, N. Gupta and S. Ogale, *Int. J. Hydrogen Energ.*, 2012, 37, 9584-9589.

- 12. G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54, 11169.
- 13. J. Hafner, J. Comput. Chem., 2008, 29, 2044-2078.
- 14. G. Kresse and D. Joubert, Phys. Rev. B, 1999, 59, 1758.
- 15. J. P. Perdew, K. Burke and M. Ernzerhof, Rev. Lett., 1996, 77, 3865.