Supporting Information

Developing self-healable and antibacterial polyacrylate coating with high mechanical strength through crosslinking by multi-amine hyperbranched polysiloxane *via* dynamic vinylogous urethane

Youhao Zhang, Li Yuan, Qingbao Guan, Guozheng Liang* and Aijuan Gu*

State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application Department of Materials Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China

Fig. S2 FTIR spectra of fresh LP-HP6 (a) and those after placed under oxygen atmosphere (b) and immersed in ultrapure water (c).

Fig. S3 Tensile stress-strain curves of LP (a) and LP-HP (b: LP-HP3; c: LP-HP6; d: LP-HP9) coatings.

Fig. S4 Tensile stress-strain curves of scratched LP-HP6 coatings with different lengths of selfhealing time (a: 0 h; b: 8 h; c: 16 h; d: 24 h).

Fig. S5 Optical microscopic images of scratched LP-HP6 coating left in air for 24 h (a) and that after maintained at 60 °C for 24 h (b).

Fig. S6 Tensile stress-strain curves of scratched LP-HP6 coatings after 24 h self-healing (left in air for 24 h before self-healing).

Fig. S8 Optical microscopic images of scratched sLP-HP coating (a) and that after maintained at 60 $^{\circ}C$ for 24 h (b).

Sample	Initial degradation temperature (°C)	Char yield at 800 °C (wt%)
LP	266	0.58
LP-HP3	246	3.53
LP-HP6	250	6.99
LP-HP9	256	8.09

Table S1 Initial degradation temperatures and char yields of LP-HP coatings

Sample name	Self-healing component	<i>T_g</i> (°C)	<i>T_{di}</i> (°C)	Self-healing condition	Self-healing efficiency	Photo ^b	σ _b ^c (MPa)	Ref	
MP7		64	191	120°C/23h	^a	Yes			
MP9	terpyridine and	51	256	90°C/17h		Yes		S1	
MP11	metal ions	33	285	100°C/40h		Yes			
MP12		42	319	60°C/16h		Yes			
Poly(MMA-co- HEA)	trithioate			UV/5min		Yes		S2	
MP1		85	351	100°C/18h		Yes			
MP3	terpyridine and	25	354	80°C/80h		Yes		S3	
MP4	metal ions	36	361	100°C/52h		Yes			
MP9	-	34	352	90°C/60h		Yes			
PBA–UPy7.2	2-ureido-4[1 H]- pyrimidinone (UPy)	22		R.T./50 h	100 %			S4	
FEF-2-BM	Diels-Alder	- 33/9 0 ^d		120°C/4h, 25°C/24h		Yes	14.2	S5	
P2	agulhudrazona	45	303	100°C/64h		Yes		56	
P3	acymydrazone	101	321	150°C/24h		Yes		30	
MSP-3	Zn ²⁺ and 2,6-bis(1' -	24/ 68.4		140°C/25min	98%	Yes	4.4		
MSP-5	methylbenzimidazol	39/ 79.1		140°C/25min	88%	Yes	9.7	S 7	
MSP-7	yl)pyridine	46.8 /83		140°C/25min	65%	Yes	12.5		
P20/80		33		R.T./24h	95%		2.9		
P20/80-CB5	hydrogen bonds	-		R.T./24h	83%		4.1	S8	
P20/80-CB20		50		R.T./24h	40%		7.2		
PHEA-1.5% TMADA	thiol-Michael adduct	9		90°C/16h	85%		0.22	S9	
PHEA-UPy	2-ureido-4[1 H]- pyrimidinone (UPy)	45	200	R.T./2 h, 50% humidity		Yes		S10	
MP2		53	322	120°C/20h					
MP3	histidine and zinc	47	295	70°C/38h		Yes			
MP13	salts	46	296	100°C/20h		Yes		S11	
MP14	Sans	40	297	150°C/40h		Yes			
MP15		42	240	100°C/20h		Yes			
LP-HP6	Vinylogous urethane	57	250	60°C/24h	>92%	Yes	17.89 ± 0.42	This work	

Table S2 Typical self-healing properties of polyacrylate polymers

a. not characterized in the reference.

b. optical microscopic self-healing photos of the sample with Yeses were provided in the reference. c. value of the virgin sample.

d. T_g values of soft domains and hard domains, respectively.

References

- [S1] S. Bode, M. Enke, R. K. Bose, F. H. Schacher, S. J. Garcia, S. van der Zwaag, M. D. Hager and U. S. Schubert, *Journal of Materials Chemistry A*, 2015, 3, 22145-22153.
- [S2] C. Cheng, X. Bai, X. Zhang, H. Li, Q. Huang and Y. Tu, Journal of Polymer Research, 2015, 22, 46.
- [S3] M. Enke, R. K. Bose, S. Bode, J. Vitz, F. H. Schacher, S. J. Garcia, S. van der Zwaag, M. D. Hager and U. S. Schubert, *Macromolecules*, 2016, 49, 8418-8429.
- [S4] A. Faghihnejad, K. E. Feldman, J. Yu, M. V. Tirrell, J. N. Israelachvili, C. J. Hawker, E. J. Kramer and H. Zeng, *Advanced Functional Materials*, 2014, 24, 2322-2333.
- [S5] A. A. Kavitha and N. K. Singha, *Macromolecules*, 2010, 43, 3193-3205.
- [S6] N. Kuhl, S. Bode, R. K. Bose, J. Vitz, A. Seifert, S. Hoeppener, S. J. Garcia, S. Spange, S. van der Zwaag, M. D. Hager and U. S. Schubert, *Advanced Functional Materials*, 2015, 25, 3295-3301.
- [S7] Z. Wang, W. Fan, R. Tong, X. Lu and H. Xia, RSC Advances, 2014, 4, 25486-25493.
- [S8] T. W. Xie, H. Zhang, Y. J. Lin, Y. Z. Xu, Y. H. Ruan, W. G. Weng and H. P. Xia, *RSC Advances*, 2015, 5, 13261-13269.
- [S9] B. Zhang, Z. A. Digby, J. A. Flum, P. Chakma, J. M. Saul, J. L. Sparks and D. Konkolewicz, *Macromolecules*, 2016, 49, 6871-6878.
- [S10] D. Zhu, Q. Ye, X. Lu and Q. Lu, Polymer Chemistry, 2015, 6, 5086-5092.
- [S11] M. Enke, S. Bode, J. Vitz, F. H. Schacher, M. J. Harrington, M. D. Hager and U. S. Schubert, Polymer, 2015, 69, 274-282.

Coating	Property	Sample 1	Sample 2	Sample 3	Sample 4	Average	Standard deviation
	σ_{b} (MPa)	1.71	1.65	1.67	1.69	1.68	0.03
LP	ϵ_{b} (%)	115.65	117.52	118.32	111.94	115.86	2.84
	E (MPa)	61.54	60.32	63.97	63.97	61.07	2.31
	Toughness (MPa)	1.73	1.84	1.76	1.76	1.75	0.06
	σ_b (MPa)	7.87	8.15	7.69	8.26	7.99	0.26
	ϵ_{b} (%)	62.1	60.51	64.83	60.25	61.92	2.10
LP-HP3	E (MPa)	207.66	187.02	215.87	190.32	200.22	13.81
	Toughness (MPa)	4.28	4.5	4.11	4.20	4.27	0.16
	$\sigma_b (MPa)$	17.35	18.36	17.84	18.01	17.89	0.42
LP-HP6	ϵ_{b} (%)	38.18	36.21	39.51	41.77	38.92	2.34
	E (MPa)	429.43	450.36	425.73	440.70	436.56	11.19
	Toughness (MPa)	5.64	5.33	5.83	6.1	5.72	0.32
	σ_{b} (MPa)	21.12	19.73	20.95	22.37	21.04	1.08
	ϵ_{b} (%)	27.35	29.59	26.14	25.68	27.19	1.75
LP-HP9	E (MPa)	725.09	650.26	635.47	780.77	697.89	67.75
	Toughness (MPa)	4.78	4.96	4.67	5.04	4.86	0.17

Table S3 Summary of tensile properties for LP-HP coatings in tensile tests

Coating	Property	Sample 1	Sample 2	Sample 3	Average	Standard deviation
	σ _b (MPa)	12.53	13.07	12.44	12.68	0.34
Virgin	ϵ_{b} (%)	9.34	9.76	8.89	9.33	0.44
(0 11)	Toughness (MPa)	0.92	0.96	0.83	0.90	0.07
After 8 h self-healing	σ _b (MPa)	14.77	15.6	14.07	14.81	0.77
	ε _b (%)	21.05	20.11	22.60	21.25	1.26
	Toughness (MPa)	2.68	2.70	2.72	2.70	0.02
After 16 h self-healing	σ _b (MPa)	15.89	15.17	17.12	16.06	0.98
	ε _b (%)	30.53	32.56	28.56	30.55	2.00
	Toughness (MPa)	4.12	4.08	4.03	4.08	0.05
After 24 h self-healing	σ _b (MPa)	16.79	15.89	17.81	16.83	0.96
	ε _b (%)	37.45	38.2	36.23	37.29	0.99
	Toughness (MPa)	5.32	5.2	5.39	5.30	0.09

Table S4 Summary of tensile properties for each scratched LP-HP6 coatings with different lengths of self-healing time

Property	Sample 1	Sample 2	Sample 3	Average	Standard deviation
σ_{b} (MPa)	16.35	17.03	16.14	16.50	0.46
ϵ_{b} (%)	36.21	38.13	37.01	37.11	0.94
Toughness (MPa)	5.19	5.44	5.20	5.27	0.14

Table S5 Summary of tensile properties of scratched LP-HP6 coatings after 24 h self-healing (left in air for 24 h before self-healing).

Table S6 Self-healing efficiencies of scratched LP-HP6 coatings after 24 h self-healing (left in air for 24 h before self-healing)

Property		Virgin (No scratch)	After 24 h self-healing	
σ_{b}	Value (MPa)	17.89±0.42	16.50±0.46	
	Efficiency (%)	-	92.23	
ε _b	Value (%)	38.92 ± 2.34	37.11±0.94	
	Efficiency (%)	-	95.34	
Toughness	Value (MPa)	5.72 ±0.32	5.27±0.14	
	Efficiency (%)	-	92.13	