Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supplementary Material for

Two-dimensional biomass-derived carbon nanosheets and

MnO/carbon electrodes for high-performance Li-ion capacitors

Yuemei Zhao, Yongpeng Cui, Jing Shi, Wei Liu, Zhicheng Shi,* Shougang Chen, Xin

Wang, and Huanlei Wang*

Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.

*Email: huanleiwang@gmail.com; zcshi@ouc.edu.cn

Fig. S1 Thermogravimetric curves of MnO/C samples in air atmosphere. During heating in air, the MnO oxidizes to Mn_2O_3 and the carbon burns. The differential weight gain is used to calculate the MnO content in MnO/C-1 and MnO/C-2 composites.

Fig. S2 High-resolution XPS (a) C 1s, (b) O 1s, (c) N 1s spectra in MnO/C-1 and MnO/C-2 samples.

Sample	<i>S_{BET}</i> (m ² g ⁻¹) ^a	$V_{\rm t}$ (cm ³ g ⁻¹) ^b	pore vol (%) ^c		
			$V_{<1 nm}$	V 1-2 nm	$V_{\geq 2 nm}$
CNS	2056	1.83	12.1	18.8	69.1
MnO/C-1	198	0.21	10.0	17.2	72.8
MnO/C-2	157	0.15	14.5	22	63.5

 Table S1. Physical parameters for CNS, MnO/C-1 and MnO/C-2.

^a The specidic surface area was calculated by Brunauer-Emmett-Teller (BET) method.

^b The total pore volume was determined at a relative pressure of 0.99.

^c The volumes of pores smaller than 1nm (V_{<1 nm}), pores between 1 and 2 nm (V_{1-2 nm}), and pores large than 2 nm (V_{>2 nm}) were generated by density functional theory (DFT) analysis.

Fig. S3 High resolution XPS (a) C 1s, (b) O 1s, (c) N 1s spectra for CNS sample.

Fig. S4 (a) CV curves of MnO/C-2 at a scan rate of 0.1 mV s⁻¹. (b) Charge and discharge curves of MnO/C-1 in every fifth cycle at various current densities. (c) Charge and discharge curves of MnO/C-2 in every fifth cycle at various current densities. (d) Electrochemical impedance spectra of MnO/C samples after 500 cycles at 1 A g⁻¹.

Fig. S5 (a) SEM image of MnO/C-1 electrode after 500 cycles. (b) TEM images of MnO/C-1 electrode after 500 cycles.

Fig. S6 Cycle performance and Coulombic efficiency for MnO/C samples at a current density of 5A g^{-1} for 5000 cycles.

Hybrid System	Votage Window	Electrolyte	Electrolyte Energy Density/Power Density	
MnO/C CNS	1.0-4.0 V	1 M LiFP ₆	100 Wh kg ⁻¹ at 83 W kg ⁻¹ ; 33650 W kg ⁻¹ at 21 Wh kg ⁻¹	This work
3D-MnO/CNS 3D-CNS	1.0-4.0 V	1.0-4.0 1M LiPF ₆ 184 Wh kg ⁻¹ at 83 W kg ⁻¹ ; V 18000 W kg ⁻¹ at 83 Wh kg ⁻¹		1
3DVN-RGO APDC	0-4.0 V	1 M LiPF ₆	1 M LiPF ₆ 162 Wh kg ⁻¹ at 200 W kg ⁻¹ ; 10000 W kg ⁻¹ at 64 Wh kg ⁻¹	
HC AC	1.8-3.9 V	1.2 M LiPF ₆	82 Wh kg ⁻¹ at 100 W kg ⁻¹ ; 5500 W kg ⁻¹ at 45 Wh kg ⁻¹	3
TiC PHPNC	0-4.5 V	1 M LiPF ₆	101.5 Wh kg ⁻¹ at 450 W kg ⁻¹ ; 675000 W kg ⁻¹ at 23.4 Wh kg ⁻¹	4
MFC 3DaC	0-4.0 V	1 M LiPF ₆	157 Wh kg ⁻¹ at 200 W kg ⁻¹ ; 20000 W kg ⁻¹ at 58 Wh kg ⁻¹	5
LTP AC	0-3.0 V	1 M LiPF ₆	14 Wh kg ⁻¹ at 45 W kg ⁻¹ ; 180 W kg ⁻¹ at 0.6 Wh kg ⁻¹	6
$\begin{array}{c} Li4Ti_5O_{12} \ \\ ODC \end{array}$	1.0-3.0 V	1 M LiPF ₆	60 Wh kg ⁻¹ at 200 W kg ⁻¹ ; 10000 W kg ⁻¹ at 9 Wh kg ⁻¹	7
LTO AC	0.5-3.5 V	1 M LiPF ₆	90 Wh kg ⁻¹ at 50 W kg ⁻¹ ; 6000 W kg ⁻¹ at 32 Wh kg ⁻¹	8
C-LTO AC	1.5-2.5 V	1 M LiPF ₆	25 Wh kg ⁻¹ at 40 W kg ⁻¹ ; 1010 W kg ⁻¹ at 16 Wh kg ⁻¹	9
$\begin{array}{c} \mathrm{Li}_{4}\mathrm{Ti}_{5}\mathrm{O}_{12} \ \\ \mathrm{TRGO} \end{array}$	1.0-3.0 V	1 M LiPF ₆	45 Wh kg ⁻¹ at 400 W kg ⁻¹ ; 3300 W kg ⁻¹ at 35 Wh kg ⁻¹	10
CPIMS900 AC	2.0-4.0 V	1 M LiPF ₆	28.5 Wh kg ⁻¹ at 348 W kg ⁻¹ ; 6940 W kg ⁻¹ at 13.1 Wh kg ⁻¹	11
MSP20 hard carbon	1.4-4.3V	1 M LiFP ₆	75 Wh kg ⁻¹ at 750 W kg ⁻¹ ; 2300 W kg ⁻¹ at 58 Wh kg ⁻¹	12
TiO ₂ AC	0-2.8 V	1 M LiPF ₆	79 Wh kg ⁻¹ at 180 W kg ⁻¹ ; 9450 W kg ⁻¹ at 32 Wh kg ⁻¹	13
$\begin{tabular}{c} \hline Li(Mn_{1/3}Ni_{1/3}Fe_{1/3})O_2 - \\ PANI \ AC \end{tabular}$	0-3.0 V	1 M LiPF ₆	49 Wh kg ⁻¹ at 1 W kg ⁻¹ ; 3 W kg ⁻¹ at 19 Wh kg ⁻¹	14
LMCMB SFAC	2.0-4.0 V	1 M LiPF ₆	83 Wh kg ⁻¹ at 128 W kg ⁻¹ ; 5718 W kg ⁻¹ at 41 Wh kg ⁻¹	15
TiO ₂ (reduced graphene oxide AC	2.0-4.0 V	1 M LiPF ₆	42 Wh kg ⁻¹ at 800 W kg ⁻¹ ; 8000 W kg ⁻¹ at 8.9 Wh kg ⁻¹	16
HC AC	2.0-4.0 V	1.2 M LiPF ₆	85.7 Wh kg ⁻¹ at 7.6 W kg ⁻¹ ; 8000 W kg ⁻¹ at 20 Wh kg ⁻¹	17

Table S2. Comparison with the performance of previously reported Li-ion capacitors

Fig. S7 (a) Cycling performance of MnO/C||CNS Li-ion capacitors with different anode to cathode mass ratios, tested at the current density of 5 A g^{-1} . (b) The corresponding Coulombic efficiency of MnO/C|| CNS Li-ion capacitors. (c) Cycling performance and Coulombic efficiency of MnO/C||CNS Li-ion capacitors with anode to cathode mass ratio of 1:2, tested at the current density of 5 A g^{-1} . (d) Cycling performance comparison of MnO/C||CNS versus reported values for hybrid systems.

Fig. S8 (a) SEM image and (b) TEM images of the MnO/C electrode for the MnO/C ||CNS Li-ion capacitors with anode to cathode mass ratio of 1:2 after 5000 cycles.

Fig. S9 (a) Electrochemical impedance spectra of Li-ion capacitors before cycling. (b) Electrochemical impedance spectra of Li-ion capacitors with the anode to cathode mass ratio of 1:2 before test, after 3000 cycles and after 5000 cycles.

Notes and references

- 1 H. Wang, Z. Xu, Z. Li, K. Cui, J. Ding, A. Kohandehghan, X. Tan, B. Zahiri, B. C. Olsen, C. M. Holt and D. Mitlin, *Nano Lett.*, 2014, **14**, 1987-1994.
- 2 R. Wang, J. Lang, P. Zhang, Z. Lin and X. Yan, *Adv. Funct. Mater.*, 2015, **25**, 2270-2278.
- 3 W. J. Cao and J. P. Zheng, J. Power Sources, 2012, 213, 180-185.
- 4 H. Wang, Y. Zhang, H. Ang, Y. Zhang, H. T. Tan, Y. Zhang, Y. Guo, J. B. Franklin, X. L. Wu, M. Srinivasan, H. J. Fan and Q. Yan, *Adv. Funct. Mater.*, 2016, 26, 3082-3093.
- 5 W. S. V. Lee, E. Peng, M. Li, X. Huang and J. M. Xue, *Nano Energy*, 2016, 27, 202-212.
- 6 V. Aravindan, W. Chuiling, M. V. Reddy, G. V. Rao, B. V. Chowdari and S. Madhavi, *Phys. Chem. Chem. Phys.*, 2012, **14**, 5808-5814.
- 7 R. Gokhale, V. Aravindan, P. Yadav, S. Jain, D. Phase, S. Madhavi and S. Ogale, *Carbon*, 2014, **80**, 462-471.
- 8 H. S. Choi, J. H. Im, T. Kim, J. H. Park and C. R. Park, *J. Mater. Chem.* 2012, 22, 16986-18993.
- 9 H.-G. Jung, N. Venugopal, B. Scrosati and Y.-K. Sun, J. Power Sources, 2013, 221, 266-271.
- 10 V. Aravindan, D. Mhamane, W. C. Ling, S. Ogale and S. Madhavi, ChemSusChem, 2013, 6, 2240-2244.
- 11 X. Han, P. Han, J. Yao, S. Zhang, X. Cao, J. Xiong, J. Zhang and G. Cui, *Electrochim. Acta*, 2016, **196**, 603-610.
- 12 J.-H. Kim, J.-S. Kim, Y.-G. Lim, J.-G. Lee and Y.-J. Kim, J. Power Sources, 2011, 196, 10490-10495.
- 13 Y. Cai, B. Zhao, J. Wang and Z. Shao, J. Power Sources, 2014, 253, 80-89.
- 14 K. Karthikeyan, S. Amaresh, V. Aravindan, H. Kim, K. S. Kang and Y. S. Lee, J. Mater. Chem. A, 2013, 1, 707-714.
- 15 Z. Yang, H. Guo, X. Li, Z. Wang, Z. Yan and Y. Wang, J. Power Sources, 2016,

329, 339-346.

- 16 H. Kim, M.-Y. Cho, M.-H. Kim, K.-Y. Park, H. Gwon, Y. Lee, K. C. Roh and K. Kang, *Adv. Energy Mater.*, 2013, **3**, 1500-1506.
- 17 J. Zhang, X. Liu, J. Wang, J. Shi and Z. Shi, *Electrochim. Acta*, 2016, 187, 134-142.
- 18 M. Yang, Y. Zhong, J. Ren, X. Zhou, J. Wei and Z. Zhou, Adv. Energy Mater., 2015, 5, 1500550.
- 19 R. Yi, S. Chen, J. Song, M. L. Gordin, A. Manivannan and D. Wang, Adv. Funct. Mater., 2014, 24, 7433-7439.
- 20 N. Arun, A. Jain, V. Aravindan, S. Jayaraman, W. Chui Ling, M. P. Srinivasan and S. Madhavi, *Nano Energy*, 2015, **12**, 69-75.
- 21 F. Zhang, T. Zhang, X. Yang, L. Zhang, K. Leng, Y. Huang and Y. Chen, *Energy Environ. Sci.*, 2013, 6, 1623-1632.
- 22 B. Li, F. Dai, Q. Xiao, L. Yang, J. Shen, C. Zhang and M. Cai, *Energy Environ. Sci.*, 2016, 9, 102-106.
- 23 N. Xu, X. Sun, X. Zhang, K. Wang and Y. Ma, RSC Adv., 2015, 5, 94361-94368.
- 24 C. Liu, C. Zhang, H. Song, X. Nan, H. Fu and G. Cao, *J. Mater. Chem. A*, 2016, **4**, 3362-3370.
- 25 J. J. Ren, L. W. Su, X. Qin, M. Yang, J. P. Wei, Z. Zhou and P. W. Shen, J. Power Sources, 2014, 264, 108-113.