Supporting Information

Ion-selective Copper Hexacyanoferrate with Open-framework Structure Enables Highvoltage Aqueous Mixed-ion Batteries

Ping Jiang^{a,b,c}, Hezhu Shao^{a,c}, Liang Chen^{a,c*}, Jiwen Feng^{b,c}, Zhaoping Liu^{a,c*}

^a Key Laboratory for Graphene Technology and Application of Zhejiang Province, Ningbo Institute of materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P.R. China
 ^b Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P.R. China
 ^c University of Chinese Academy of Sciences, Beijing 100000, P.R. China

* Corresponding author. E-mail: cl@nimte.ac.cn, liuzp@nimte.ac.cn.

Figure S1. A scheme of the co-precipitation process for CuHCF/Gr.

Figure S2. Rate capabilities of CuHCF in aqueous 0.1 M $Li_2SO_4 + 0.4M Na_2SO_4$ (**a**), 0.25 M $Li_2SO_4 + 0.25 M Na_2SO_4$ (**b**), 0.1 M $Li_2SO_4 + 0.4M K_2SO_4$ (**c**), 0.25 M $Li_2SO_4 + 0.25 M Na_2SO_4$ (**d**), 0.1 M $Na_2SO_4 + 0.4 M K_2SO_4$ (**e**), and 0.25 M $Na_2SO_4 + 0.25 M K_2SO_4$ (**f**). 1C equals to 60 mA g⁻¹.

Figure S3. Plots of $E_{1/2}$ and ΔE_p vs. the mole fraction of Li⁺/Na⁺, Li⁺/K⁺, and Na⁺/K⁺ mixed-ion electrolytes. $E_{1/2}$, formal potential, the average of the anode and cathode peak potentials; ΔE_p , the difference voltage between anode and cathode peak potentials.

Figure S4. (a) Cyclic voltammograms of CuHCF/Gr in 0.4 M $K_2SO_4 + 0.1$ M Na_2SO_4 at various scan rates. (b) The fitted lines of ln(peak current) versus ln(scan rate) at different reduction/oxidation potentials. (c) *b*-value obtained at different reduction/oxidation potentials. (d) Cyclic voltammogram of CuHCF/Gr in 0.4 M $K_2SO_4 + 0.1$ M Na_2SO_4 at a scan rate of 2 mV s⁻¹ with the capacitive contribution (the red region).

The currents (i) at various scan rates (v) should obey the power law (equation 1 and 2), where a and b are adjustable parameters.

$$i = av^b \tag{1}$$

$$Ini = bInv + Ina \tag{2}$$

For a redox reaction limited by semi-infinite diffusion, the peak current *i* varies as $v^{1/2}$ (*b* = 1); for a capacitive process, it varies as v (*b* = 0.5). The CV curves of CuHCF/Gr in 0.4 M K₂SO₄ + 0.1 M Na₂SO₄ electrolytes at various scan rates are recorded in Figure S4a. From the ln^{*i*} vs. ln^v curves in Figure S4b, the average b value is found to be 0.82, demonstrates that a combination of capacitive process and diffusion-limited redox reactions manages the electrochemical reaction. Thus, the *i* value consists of two parts, and can be expressed as following equation:

$$i = k_1 v + k_2 v^{1/2} \tag{3}$$

As k_1 and k_2 are always fixed for the same electrochemical reaction, we can calculate k_1 and k_2 through the equation 3. The capacitance contribution of CuHCF/Gr in 0.4 M K₂SO₄ + 0.1 M Na₂SO₄ is found to be 57.6%, which accounts for the high rate capability of CuHCF/Gr. Similar phenomenon are found in other electrolytes.

Figure S5. (a, c) Cyclic voltammograms at a scan rate of 0.3 mV s⁻¹ for carbon-coated $NaTi_2(PO_4)_3$ in 0.5 M Na_2SO_4 and TiP_2O_7 in 0.5 M Li_2SO_4 (initial 3 cycles). (b, d) galvanostatic profiles of carbon-coated $NaTi_2(PO_4)_3$ and TiP_2O_7 . All electrode potentials are vs. standard hydrogen electrode (SHE).

Figure S6 a-g. *ex-situ* XPS peak fitting spectra from Fe $2p_{3/2}$ core level of CuHCF at different charging/discharging states.

Figure S7. *Ex-situ* XPS spectra recorded from F 1s score level of CuHCF/Gr at a-g states. The explanations of different states are illustrated in the caption of Figure 5 in the manuscript.

Church well be very store		Value		
Structural pa	rameters	Rietveld	GGA+U	
Lattice parameter	a = b = c	10.09	10.22	
	$\alpha = \beta = \gamma$	90°	90°	
Bond distance	Fe-C	1.92Å	1.92Å	
	Cu-N	1.92Å	2.05Å	
	C-N	1.21Å	1.17Å	
Angle	∠Cu-N-C	180°	180°	
	\angle Fe-C-N	180°	180°	

Table S1. Structural parameter of CnHCF in the *Fm-3m* structure determined from Rietveld method using powder X-ray diffraction data (Rietveld) and *ab initio* calculations with the GGA+U approximation (GGA+U).

States	Percentage / %		
	Fe(II)	Fe(III)	Fe(III)/ Fe(II)
а	84.25	15.75	0.19
b	66.36	33.64	0.51
С	47.45	52.55	1.11
d	40.63	59.37	1.46
е	44.07	55.93	1.27
f	57.52	42.48	0.74
g	81.64	18.36	0.22

Table S2. The compositions of Fe(II) and Fe(III) in CuHCF/Gr at different states via peak fitting of XPS spectra.

States	Atomic concentration / %				
States	К	Fe	Ν	Cu	
а	5.38	14.21	46.06	8.77	
b	3.47	18.33	41.86	10.63	
С	2.55	17.39	44.84	10.27	
d	0.64	17.74	42.82	12.49	
е	2.01	20.21	42.12	10.13	
f	2.94	18.64	44.80	10.32	
g	5.22	12.01	46.52	11.21	

Table S3. Atomic concentration of different elements in graphene modified CuHCF during electrochemical cycling.

	Mole ratio / %					
State	Na/Fe	K/Fe	(Na+K)/F	Na/F	K/Fe	Na/K
S			е	е		
	0.5M Na ₂ SO ₄	0.5M K ₂ SO ₄	0.1M Na ₂ SO ₄ + 0.4M K ₂ SO ₄			
Q ₁	78.21	92.14	83.85	4.06	79.79	5.09
Q ₂	49.12	42.12	39.55	3.32	36.23	9.17
Q ₃	4.30	3.46	2.99	0.99	1.99	49.83

Table S4. Mole ratio of different elements in graphene modified CuHCF during charging process.