Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

## **Supporting information**

**Table ST1**: Comparison the  $La_{1-x}Sr_xCoO_3$  perovskite oxide catalyst based aprotic Li-O<sub>2</sub> battery.

| Catalyst                                                            | Current rate           | Discharge<br>capacity<br>(mAh/g) | Overpotential<br>(V) | Referenc<br>e   |
|---------------------------------------------------------------------|------------------------|----------------------------------|----------------------|-----------------|
| HS La <sub>0.6</sub> Sr <sub>0.4</sub> CoO <sub>3-δ</sub>           | 100 mA g <sup>-1</sup> | 4895                             | 1.016                | Present<br>work |
| La <sub>0.6</sub> Sr <sub>0.4</sub> CoO <sub>3-δ</sub>              | 100 mA g <sup>-1</sup> | 4701                             | 1.1                  | R1              |
| La <sub>0.6</sub> Sr <sub>0.4</sub> CoO <sub>3-δ</sub>              | 100 mA g <sup>-1</sup> | 3256                             | 0.85                 | R2              |
| $La_{0.6}Sr_{0.4}CoO_3$                                             | 30 mA g <sup>-1</sup>  | 3672                             | ~1.4                 | R3              |
| $La_{0.6}Sr_{0.4}Co_{0.9}Mn_{0.1}O_3$                               | 200 mA g <sup>-1</sup> | 3107                             | ~1.4                 | R4              |
| La <sub>0.5</sub> Sr <sub>0.5</sub> CoO <sub>3-x</sub><br>Nanotubes | 25 mA g <sup>-1</sup>  | 5799                             | 1.14                 | R5              |
| $La_{0.8}Sr_{0.2}Mn_{0.6}Ni_{0.4}O_{3}$                             | 50 mA g <sup>-1</sup>  | 5364                             | 1.33                 | R6              |
| La <sub>0.4</sub> Sr <sub>0.6</sub> MnO <sub>3</sub>                | 50 mA g <sup>-1</sup>  | 5624                             | 1.45                 | R7              |

- R1. M.Y. Oh, J.S. Jeon, J.J. Lee, P. Kim, K.S. Nahm, The bifunctional electrocatalytic activity of perovskite  $La_{0.6}Sr_{0.4}CoO_{3-\delta}$  for oxygen reduction and evolution reactions, RSC Advances, 5 (2015) 19190-19198.
- R2. J.J. Lee, M.Y. Oh, K.S. Nahm, Effect of Ball Milling on Electrocatalytic Activity of Perovskite La<sub>0.6</sub>Sr<sub>0.4</sub>CoO<sub>3-δ</sub> Applied for Lithium Air Battery, Journal of The Electrochemical Society, 163 (2016) A244-A250.
- R3. N. Sun, H. Liu, Z. Yu, Z. Zheng, C. Shao, The La<sub>0.6</sub>Sr<sub>0.4</sub>CoO<sub>3</sub> perovskite catalyst for Li-O<sub>2</sub> battery, Solid State Ionics, 268 (2014) 125-130.

- R4. N. Sun, H. Liu, Z. Yu, Z. Zheng, C. Shao, Mn-doped La<sub>0.6</sub>Sr<sub>0.4</sub>CoO<sub>3</sub> perovskite catalysts with enhanced performances for non-aqueous electrolyte Li-O<sub>2</sub> batteries, RSC Advances, 6 (2016) 13522-13530.
- R5. G. Liu, H. Chen, L. Xia, S. Wang, L.-X. Ding, D. Li, K. Xiao, S. Dai, H. Wang, Hierarchical Mesoporous/Macroporous Perovskite La<sub>0.5</sub>Sr<sub>0.5</sub>CoO<sub>3-x</sub> Nanotubes: A Bifunctional Catalyst with Enhanced Activity and Cycle Stability for Rechargeable Lithium Oxygen Batteries, ACS Applied Materials & Interfaces, 7 (2015) 22478-22486.
- R6. Z. Wang, Y. You, J. Yuan, Y.-X. Yin, Y.-T. Li, S. Xin, D. Zhang, Nickel-Doped La<sub>0.8</sub>Sr<sub>0.2</sub>Mn<sub>1-x</sub>Ni<sub>x</sub>O<sub>3</sub> Nanoparticles Containing Abundant Oxygen Vacancies as an Optimized Bifunctional Catalyst for Oxygen Cathode in Rechargeable Lithium–Air Batteries, ACS Applied Materials & Interfaces, 8 (2016) 6520-6528.
- R7. Y. Zhao, Y. Hang, Y. Zhang, Z. Wang, Y. Yao, X. He, C. Zhang, D. Zhang, Strontiumdoped perovskite oxide La<sub>1-x</sub>Sr<sub>x</sub>MnO<sub>3</sub> (x=0, 0.2, 0.6) as a highly efficient electrocatalyst for nonaqueous Li-O<sub>2</sub> batteries, Electrochimica Acta, 232 (2017) 296-302.



Figure S1. The XRD pattern of the synthesised  $La_{0.6}Sr_{0.4}CoO_3$  (HS LSC) at different temperatures (a) 700 °C (HS LSC-7), (b) 800 °C (HS LSC-8), (c) 900 °C (HS LSC-9), and (d) 1000 °C (HS LSC-10).



**Figure S2.** Scanning electron microscope images of pristine HS LSC-7 (a), HS LSC-8 (b), HS LSC-9 (c) and HS LSC-10 (d).



**Figure S3.** (a) Comparison cyclic voltammetry of NP-LSC-10 and HS-LSC-10 in  $O_2$  saturated 0.1 M KOH electrolyte and (b) comparison CV of HS-LSC-10 in  $O_2$  and  $N_2$  saturated 0.1 M KOH solution at 5 mV s<sup>-1</sup> scan rate.



**Figure S4.** The limited capacity range charge/discharge curves of (a) HS LSC-7, (b) HS LSC-8, (c) HS LSC-9 and (d) HS LSC-10 catalyst at 100 m g<sup>-1</sup> between 2 to 4.3 V.

## Calibration of Hg/HgO reference electrode:

The calibration of Hg/HgO reference electrode was performed in a standard three-electrode system with polished Pt wire as the working and counter electrodes, and the Hg/HgO electrode used as reference electrode. The standard electrode potential of Hg/HgO/1M KOH was 0.118 V *vs.* SHE based on the manufacture's specification (ALS co., Ltd). 0.1 M KOH electrolyte is pre-purged and saturated with high purity H<sub>2</sub> gas for 20 minutes. Linear scanning voltammetry is then run at a scan rate of 0.5 mV s<sup>-1</sup>, and the potential at which the current crossed zero is taken to be the thermodynamic potential for the hydrogen electrode reactions. Here, the zero-current point is at -0.886 V, so (*E*(RHE) = *E*(Hg/HgO) +0.886 V).

