Supporting Information

Cobalt-based Nanosheet Arrays as Efficient Electrocatalysts for Overall Water Splitting

Bingrui Liu,^a Ning Zhang,^{a,b*} and Mingming Ma^{a*}

a. CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
b. Department of Biology and Environmental Engineering, Hefei University, Hefei, Anhui 230022, China
*E-mail: zlab@ustc.edu.cn; mma@ustc.edu.cn

Catalogue

Figure S1. SEM image of as prepared electrodeposition cobalt alloy and CoFeB alloy.

Figure S2. LSV of Co NS synthesized at different Co: P molar ratio.

Figure S3. XRD spectrum of Co NS sample.

Figure S4. EDX spectrum of Co NS sample.

Figure S5. XPS spectrum for Co NS sample.

Figure S6. Raman spectrum of Co NS sample.

Figure S7. Nyquist plots of electrocatalysts for HER.

Figure S8. Cyclic voltammograms recorded for the Co NS.

Figure S9. SEM image and XRD spectrum of as-prepared CoFeB alloy

Figure S10. LSV of CoFeBO NS synthesized at different Co: Fe molar ratio.

Figure S11. XRD spectrum of CoFeBO NS sample.

Figure S12. EDX spectrum of CoFeBO NS sample.

Figure S13. XPS spectrum of CoFeBO NS sample.

Figure S14. Raman spectrum of CoFeBO NS sample.

Figure S15. Cyclic voltammograms recorded for the CoFeBO NS and Co NS.

Table S1. Comparison of the HER performance of non-noble metal basedelectrocatalysts.

Table S2. Comparison of the OER performance of non-noble metal basedelectrocatalysts.

Table S3. Comparison of the overall water splitting performance of non-noble metalbased electrocatalysts.

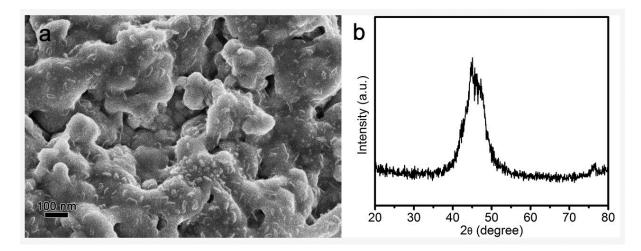
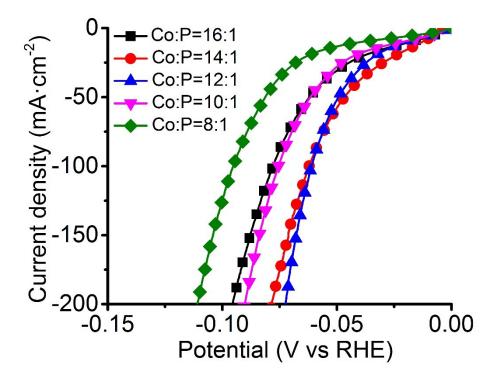



Figure S1. (a) SEM image and (b) XRD spectrum of as-deposited cobalt alloy.

Figure S2. Linear sweep voltammetry of Co NS (for HER reaction) synthesized with different CoSO₄:NaH₂PO₂ molar ratio.

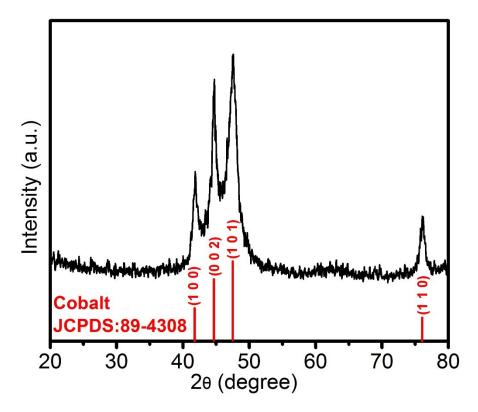


Figure S3. XRD spectrum of Co NS sample.

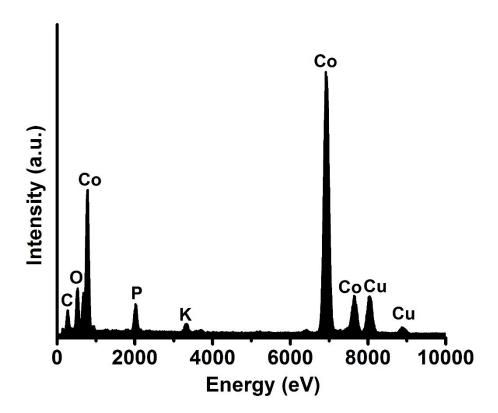
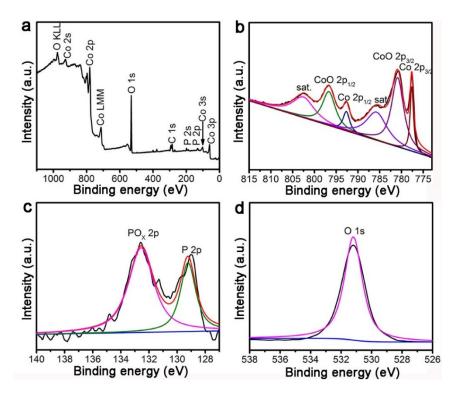
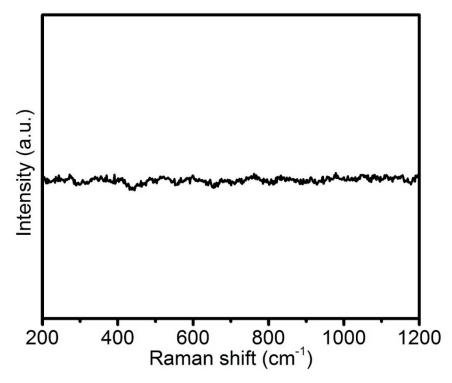




Figure S4. EDX spectrum of Co NS sample.

Figure S5. a) XPS survey spectrum for Co NS; core level of XPS spectrum in the (b) Co 2p, (c) P 2p and (d) O 1s for Co NS.

Figure S6. Raman spectrum of Co NS sample. There are no obviously peaks in the Raman spectrum of the Co NS before and after the 1h of pre-reduction, which further confirms that the surface of the Co NS catalysts is comprised of cobalt metal.

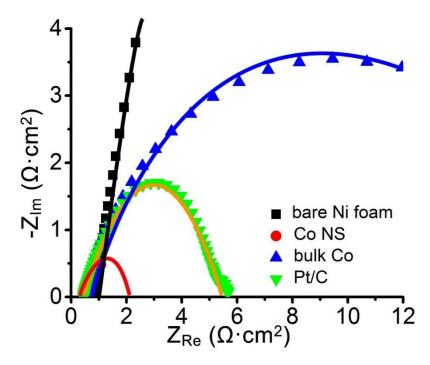
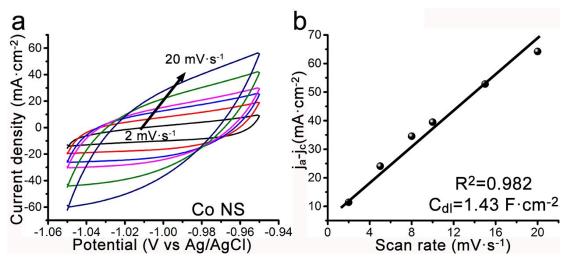



Figure S7. Nyquist plots of bare NF, Co NS, bulk Co and 20% Pt/C electrodes for HER in

Figure S8. (a) Cyclic voltammograms recorded for the Co NS electrode at various scan rates in the non-Faradaic region in 1.0 M KOH. (b) Scan rate dependence of the current densities of the Co NS electrode at -1 V vs Ag/AgCl. The slope of the lines in (b) is the effective electrochemically active surface area of Co NS electrodes.

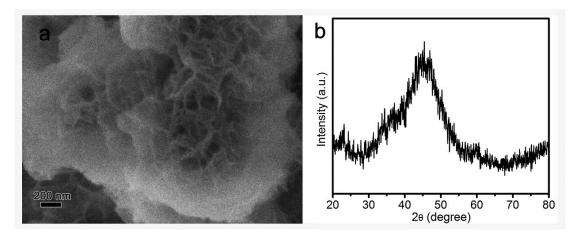
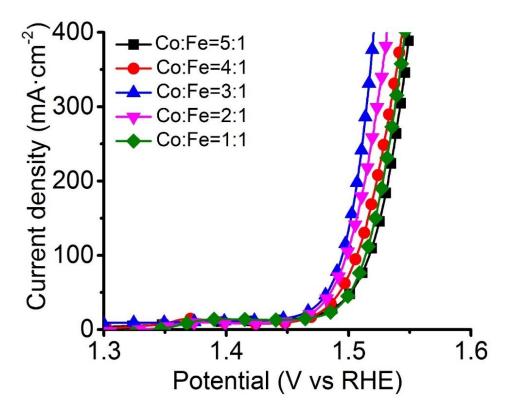



Figure S9. (a) SEM image and (b) XRD spectrum of as-prepared CoFeB alloy.

Figure S10. Linear sweep voltammetry of CoFeBO NS (for OER reaction) synthesized with different $CoCl_2$: FeSO₄ molar ratio. The molar ratio of B: (Co+Fe) was fixed at 4:1.

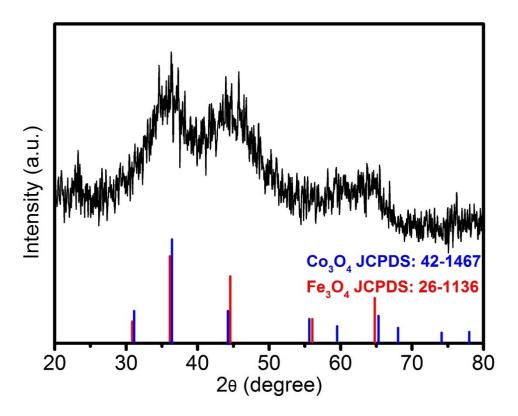
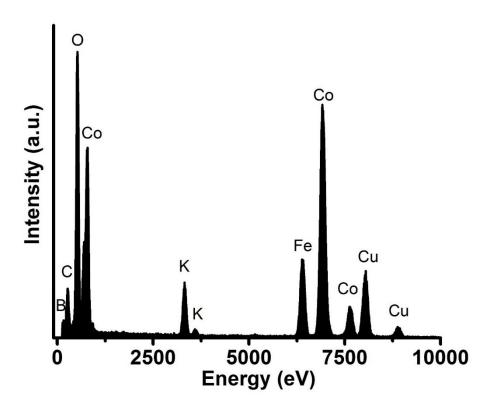
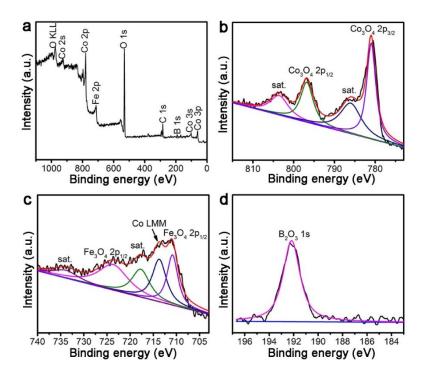
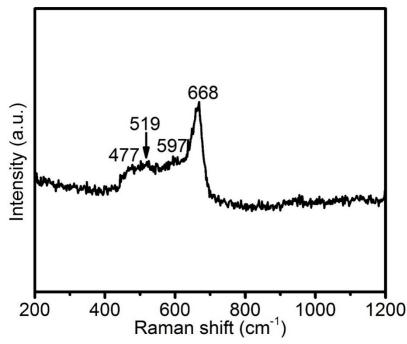


Figure S11. XRD spectrum of CoFeBO NS sample.

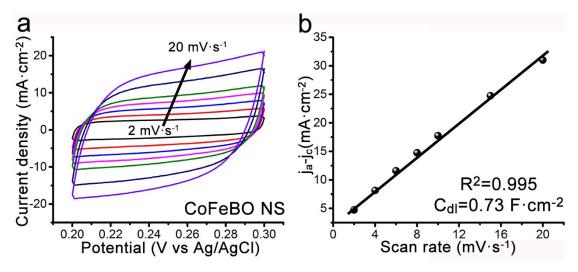

Figure S12. EDX spectrum of CoFeBO NS sample.

Figure S13. (a) XPS survey spectrum for CoFeBO NS; core level of XPS spectrum in the (b) Co 2p, (c) Fe 2p, and(d) B 1s for CoFeBO NS.

Figure S14. Raman spectrum of CoFeBO NS sample. The bands at 477, 519, 597 and 668 cm⁻¹ are ascribed to the E_g , F_{2g}^1 and F_{2g}^2 and A_{1g} characteristic mode of Co_3O_4 , respectively (J. Phys. C: Solid State Phys, **1988**, 21 L199-L201). It is also likely that some Fe₃O₄ contributes to the intensity of the 668 cm⁻¹ band (Electrochimica acta, **1992**, 37: 2747-2754). These data suggests that the surface of the CoFeBO NS sample is covered by a layer of metal oxides, including Co₃O₄ and magnetite.

Figure S15. (a) Cyclic voltammograms recorded for the CoFeBO NS electrode at various scan rates in the non-Faradaic region in 1.0 M KOH. (b) Scan rate dependence of the current densities of the CoFeBO NS electrode at 0.25V vs Ag/AgCl . The slope of the lines in (b) is the effective electrochemically active surface area of CoFeBO electrodes.

Table S1. Comparison of Co NS and other non-noble metal electrocatalysts for HER in

Material	Overpotential η (V) @ corresponding j	Current density j(mA·cm ⁻²)	Tafel slope (mV·dec ⁻¹)	Reference
MoB microparticles	~0.24	20	59	Angew. Chem., Int. Ed. 2012, 51, 12703
CoP nanowire arrays	0.209	10	129	J. Am. Chem. Soc. 2014, 136, 7587
Co-NRCNTs	0.37	10	69	Angew. Chem., Int. Ed. 2014, 53, 4372
MoP nanoparticles	~0.13	10	48	Energy Environ. Sci. 2014, 7, 2624
NiO/Ni@CNT	0.8	10	82	Nat. Commun. 2014 DOI:10.1038/ncomms5695
MoC _x nanooctahedrons	0.151	10	59	Nat. Commun. 2015 DOI:10.1038/ncomms7512
Mo _x C-Ni@NCV	0.126	10	93	J. Am. Chem. Soc. 2015, 137, 15753
CoO _x @CN	0.232	10	115	J. Am. Chem. Soc. 2015, 137, 2688
Ni-MoS ₂	98	10	60	Energy Environ. Sci. 2016, 7, 2624
Co NS	0.02	10	-	
	0.06	100	42.6	This work
	0.083	400		

Table S2. Comparison of CoFeBO NS and other non-noble metal electrocatalysts for

Material	Overpotential η (V)	Current density j	Tafel slope	Reference
	@ corresponding j	(mA·cm ⁻²)	(mV·dec ⁻¹)	
Co ₃ O ₄ NWs	0.42	13.1	72	Adv. Energy Mater. 2014,
				DOI: 10.1002/aenm.201400696
ү-СоООН	0.3	10	38	Angew. Chem., Int. Ed. 2015, 54, 8722
Ni ₂ P	0.29	10	47	Energy Environ. Sci. 2015, 8, 2347
Fe _{0.1} Ni _{0.9} O	0.297	10	37	ACS nano, 2015, 9, 5180
NiFe/NF	0.27	80	28	Nat. Commun. 2015, 6, 6616
Co ₄ N	0.057	10	44	Angew. Chem., Int. Ed. 2015,
CO4IN	0.257			127,14923
	0.26	10		J. Am. Chem. Soc. 2015, 137,
Ni ₃ S ₂ /NF				14023
CoP nanorods	0.29	10	65	Adv. Funct. Mater. 2015, 25, 7337
CoSe ₂ sheets	0.47	73	64	Angew. Chem., Int. Ed. 2015, 54, 12004
Co-B _i NS/G	0.29	10	53	Angew. Chem., Int. Ed. 2016, 55, 2488
FeOOH/Co/FeOOH	~0.25	20	32	Angew. Chem., Int. Ed. 2016, 55, 3694
CoMnP	0.33	10	61	J. Am. Chem. Soc. 2016, 138, 4006
Co-P film	0.345	10	47	Angew. Chem., Int. Ed. 2015, 54,6251
	0.413	100		
	0.463	500		
h-NiS _x	0.18	10	96	Adv. Energy Mater., 2016, DOI: 10.1002/aenm.201502333
	0.217	100		
	0.316	500		
CoFeBO NS	0.24	10	53	This work
	0.28	100		
	0.31	500		

Table S3. Comparison of CoFeBO NSCo NS and other non-noble metalelectrocatalysts for overall water splitting in 1.0 M KOH.

Material	Voltage (V)	Current density (mA·cm ⁻²)	Reference	
NiSe NWs NiSe NWs	1.63	10	Angew. Chem., Int. Ed. 2015, 54, 9351	
Ni ₅ P ₄ Ni ₅ P ₄	~1.7	10	Angew. Chem., Int. Ed. 2015, 127, 12538	
СоР СоР	1.74	100	Angew. Chem., Int. Ed. 2015, 54, 6251	
CoP-MNA CoP-MNA	1.62	10	Adv. Funct. Mater. 2015, 25, 7337	
Ni/NiP Ni/NiP	1.61	10	Adv. Funct. Mater. 2016, DOI: 10.1002/adfm.201505626	
NiFe LDH NiFe LDH	1.7	10	- Science, 2014, 345, 1593	
	1.8	20		
CoMnO@CN I	1.7	54	J. Am. Chem. Soc., 2015, 137, 14305	
CoMnO@CN	1.8	108		
NiFeO _x NiFeO _x	1.7	30	Nat. Commun. 2015,	
	1.8	100	DOI:10.1038/ncomms8261	
EG/Co _{0.85} Se/NiFe-LDH	1.67	10	Energy Environ. Sci., 2016, 9, 478	
EG/Co _{0.85} Se/NiFe-LDH	1.71	20		
NiCo ₂ O ₄ Ni _{0.33} Co _{0.67} S ₂	1.72	10	Adv. Energy Mater. 2015, DOI: 10.1002/aenm.201402031.	
NiFe LDH NiO/Ni-CNT	1.5	10	Nat. Commun. 2014,	
			DOI:10.1038/ncomms5695.	
NiFe LDH Cr ₂ O ₃ /NiO-Ni	1.75	200	Angew. Chem., Int. Ed. 2015, 54, 11989	
	1.5	10		
CoFeBO NS Co NS	1.62	100	This work	
-	1.68	200		