Electronic supplementary information

Unraveling Factors Leading to Efficient Norbornadiene-Quadricyclane Molecular Solar-Thermal Energy Storage Systems

Kjell Jorner,^{ab} Ambra Dreos,^c Rikard Emanuelsson,^{ad} Ouissam El Bakouri,^e Ignacio Fdez. Galván,^{bf} Karl Börjesson,^{cg} Ferran Feixas,^{*e} Roland Lindh,^{*bf} Burkhard Zietz,^{*b} Kasper Moth-Poulsen^{*c} and Henrik Ottosson^{*ab}

^a Department of Chemistry – BMC, Uppsala University, Box 576, SE-75123 Uppsala, Sweden. ^b Department of Chemistry – Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden. ^c Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, SE-41296 Gothenburg, Sweden. ^d Department of Engineering Sciences, Uppsala University, Box 534, SE-75121 Uppsala, Sweden. ^e Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, 17003 Girona, Spain. ^f Uppsala Center of Computational Chemistry – UC₃, Uppsala University, Box 523, SE-75120 Uppsala, Sweden. ^g Department of Chemistry & Molecular Biology, University of Gothenburg, Kemigården 4, SE-41296 Gothenburg, Sweden.

1 Contents

2 Synthe		nthes	is	3
	2.1	NB	D-H ₂	3
	2.2	NB	D-Me ₂	4
	2.3	NB	D-iPr ₂	4
	2.4	Atte	empted synthesis of NBD-tBu2	5
	2.5	Pro	cedures and characterization	5
	2.5	5.1	General experimental procedures	5
	2.5	5.2	Specific procedures and characterization	6
3	Va	riable	e temperature NMR experiments	14
4	Qu	lantur	n yields	17
5	Ki	netics	of thermal back-conversion	20
6	Ex	tincti	on coefficients	21
7	Di	fferer	tial scanning calorimetry of quadricyclanes	21
8	Te	st of j	photoconversion in sun-like conditions in a demonstrative device	23
9	Computational			
	9.1	Pho	tochemical calculations	24
	9.1	.1	Methods	24
	9.1	.2	Conical intersections	
	9.2	ME	Ps and linear interpolations	34
	9.3	TD	DFT calculations	40
	9.4	Stor	rage energies and transition state calculations	40
	9.4	1.1	Storage energies	40
	9.4	1.2	Transition state calculations	41
9.5 Character of S₁ homoaromatic min9.5.1 Multicenter indices		Cha	racter of S ₁ homoaromatic minimum	47
		5.1	Multicenter indices	47
	9.5	5.2	NICS scans	48
	9.6	MQ	-R ₂ compounds	50
	9.7	Coc	ordinates and energies of the compounds	51
1() NN	AR sp	bectra	75
1	l Re	feren	ces	97

2 Synthesis

2.1 NBD-H₂

Cyclopentenone **1** was prepared in 43% yield by a Pauson-Khand reaction according to the procedure of Kerr *et. al.*¹ Reaction with PhLi in THF gave the alcohol **2**,² which was dehydrated to afford the corresponding cyclopentadienes, which reacted in situ with dimethyl acetylenedicarboxylate (DMAD) in a Diels-Alder reaction, giving most likely the two isomers **NBD-H**₂ and **NBD-H**₂-iso. Spectral data were consistent with that reported by Dalkılıç and Daştan.³ Conversion into the quadricyclane form by illumination at 366 nm allowed separation by column chromatography, and thermal back-conversion by heating in ethyl acetate followed by column chromatography afforded **NBD-H**₂ in 7% yield from the alcohol **2**.

2.2 NBD-Me₂

Cyclopentadiene **5** was synthesized according to the procedure of Zimmerman *et al.*⁴ A Diels-Alder reaction with DMAD afforded **NBD-Me**₂ in 79% yield.⁵

2.3 NBD-iPr₂

The alcohol 8^6 was prepared in a Grignard reaction starting from commercially available ketone 7. Exchange of OH for Cl by use of HCl afforded a mixture, probably due to competing dehydration, which was used in the next step without purification to give the diacetylene 10, which could also not be purified. Photochemical ring closure in an analogous way as for 3 afforded the cyclopentadiene 11 in an overall yield of 5% over three steps. Diels-Alder reaction with DMAD then gave NBD-*i*Pr₂ in 68% yield.

2.4 Attempted synthesis of NBD-tBu₂

The synthesis of NBD-*t*Bu was attempted using the same methodology as for **NBD-H**₂ and **NBD-***i***Pr**₂, but the Cu-catalyzed reaction of the chloride to the acetylene did not produce the wanted diacetylene, probably due to the excessive steric repulsion.

2.5 Procedures and characterization

2.5.1 General experimental procedures

Dry conditions below indicate reactions using standard Schlenk techniques under an atmosphere of argon. Glassware were dried by the use of a heat gun at 650 °C under high vacuum. Dry solvents were obtained from a Pure Solv MD-4-EN solvent purification system. Microwave-assisted chemistry was carried out in a Biotage Initiator Sixty scientific microwave reactor. The NMR spectra were recorded on a Varian 300 MHz spectrometer, a Varian 400 MHz spectrometer or a Varian 500 MHz spectrometer. The ¹H spectra were recorded at 300

MHz, 400 MHz and 500 MHz, respectively. The ¹³C spectra were recorded at 75.4 MHz or 100.6 MHz, respectively. Referencing was done to tetramethylsilane via the residual solvent peaks (¹H, CDCl₃ at 7.26 ppm, toluene-d₈ at 2.09 ppm; ¹³C, CDCl₃ at 77.16 ppm). High-resolution mass spectrometry (HRMS) was performed using a high-resolution orbitrapXL mass spectrometer.

General procedure to prepare the Grignard reagent of phenylacetylene

To a well-stirred mixture of Mg turnings in dry THF, ethyl bromide (1 eq.) was added at a rate that kept reflux temperature. If needed, a small crystal of iodine was added to initiate the reaction. After the Mg had dissolved, phenylacetylene (1 eq.) was added dropwise and the reaction mixture was stirred until gas evaporation ceased. The Grignard reagent was used directly after preparation.

2.5.2 Specific procedures and characterization

2-Phenylcyclopent-2-en-1-one (1)

Preparation of hexacarbonyldicobalt complex of phenylacetylene. Phenylacetylene (1.6 mL, 14.7 mmol) in dry pentane was added dropwise to a solution of $Co_2(CO)_8$ (6.1 g of 90% complex moistured by hexane, 16.1 mmol) in dry pentane under argon atmosphere. After of cessation of the initial gas evolution, the solution was stirred for 2 h before being poured onto a silica plug. After elution with petroleum ether/ethyl acetate (9:1), solvents were removed under reduced pressure and the resulting complex was used directly in the next step.

Preparation of cyclopentenone. The previously prepared hexacarbonyldicobalt complex of phenylacetylene was dissolved in vinyl benzoate (4.07 ml) and put under N₂ atmosphere. *N*-methylmorpholine *N*-oxide (NMO) (19.87 g, 147 mmol) dissolved in dry DCM (300 mL) was

added by syringe pump over 3 h. The resulting mixture was filtered repeatedly through celite and silica and excess vinyl benzoate was evaporated under reduced pressure. Purification by silica flash chromatography (petroleum ether/ethyl acetate, 3:1) afforded **1** (1.005 g, 6.35 mmol, 43% yield). ¹H NMR (400 MHz, CDCl₃) δ 2.59-2.63 (m, 2H), 2.70-2.75 (m, 2H), 7.31-7.41 (m, 3H), 7.67-7.71 (m, 2H), 7.83 (t, *J* = 3.0 Hz, 1H). The spectral data were consistent with the literature.⁷

1,2-Diphenylcyclopent-2-en-1-ol (2)

Compound **1** (0.956 g, 6.0 mmol) was dissolved in dry THF (30 mL) under argon atmosphere and cooled to -78°C. To this solution, PhLi (1.8 M in *t*-butylether, 4.4 mL, 7.9 mmol) was added dropwise, and the solution was allowed to reach room temperature under stirring overnight. The reaction mixture was quenched with sat. NH₄Cl (aq), extracted twice with diethyl ether and dried over MgSO₄. Purification by silica flash chromatography (petroleum ether/ethyl acetate, 3:1) afforded **2** as a yellow oil (0.771 g, 3.26 mmol, 54%).¹H NMR (400 MHz, CDCl₃) δ 2.21 (s, 1H), 2.39 (t, *J* = 6.4 Hz, 2H), 2.46-2.56 (m, 1H), 2.59-2.69 (m, 1H), 6.48 (t, *J* = 2.5 Hz, 1H), 7.11-7.25 (m, 4H), 7.28-7.34 (m, 4H), 7.46 (d, *J* = 7.5 Hz, 2H). The spectral data were consistent with the literature.²

2,3-Dimethyl-5,6-diphenylbicyclo[2.2.1]hepta-2,5-diene-2,3-dicarboxylate (NBD-H₂)

Compound **2** (0.771 g, 3.26 mmol) was dissolved together with DMAD (0.5 mL, 4.1 mmol) in diethyl ether (10 mL). The solution was cooled to -78 °C and *p*-toluenesulfonic acid (0.621 g,

3.26 mmol) in diethyl ether (10 mL) was added dropwise. The reaction vessel was taken off the cooling bath and stirred for 1 h before being quenched by sat. NaHCO₃ (aq). The organic phases were separated and the water phase extracted once with diethyl ether. The organic phases were dried with MgSO₄ and evaporated under reduced pressure to give 1.343 g of crude product as a viscous oil. Purification by silica flash chromatography (petroleum ether/ethyl acetate, 3:1) yielded 0.327 g of viscous yellow oil. Remaining DMAD was distilled off by Kugelrohr distillation (150-175 °C at 0.1-1 mbar) to yield 0.263 mg of yellow viscous oil, most likely containing the isomers NBD-H₂ and NBD-H₂-iso.³ The oil was dissolved in chloroform and irradiated at 366 nm to convert into the quadricyclane isomers. Separation with silica flash chromatography (petroleum ether/ethyl acetate, 3:1), and thermal back conversion in ethyl acetate at 50 °C overnight followed by a second column afforded NBD-H₂ as pale yellow crystals (87 mg, 0.24 mmol, 7%). ¹H NMR (400 MHz, CDCl₃) δ 2.44 (dt, J_1 = 7.0 Hz, J_2 = 1.6 Hz, 1H), 2.52 (dt, J₁ = 7.0 Hz, J₂ = 1.6 Hz, 1H), 3.80 (s, 6H), 4.27 (t, J = 1.6 Hz, 2H), 7.18-7.29 (m, 6H), 7.32-7.36 (m, 4H). ¹³C NMR (100 MHz, CDCl3) δ 52.2, 59.6, 69.9, 127.4, 127.5, 128.5, 136.3, 147.7, 151.9, 165.5. HRMS calculated for $C_{23}H_{20}O_4$ [M+Na]⁺: m/z 383.1254, found 383.1256.

2-Methyl-4-phenylbut-3-yn-2-ol (3)

To a solution of phenylacetylene magnesium bromide (66 mmol) in dry THF (40 mL), acetone (4.41 mL, 60 mmol) in dry THF (10 mL) was added dropwise. The reaction mixture was stirred overnight at room temperature before being poured into a mixture of sat. NH₄Cl (aq) and ice. The phases were separated and the water phase was extracted twice with diethyl ether. The combined organic phases were washed with sat. NH₄Cl (aq) and brine and dried over MgSO₄.

Evaporation of solvent and excess starting material yielded **3** (8.54 g, 53 mmol, 67%) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 1.62 (s, 6H), 7.28-7.32 (m, 3H), 7.40-7.44 (m, 2H). The spectral data were consistent with the literature.⁸

(3-Chloro-3-methylbut-1-yn-1-yl)benzene (4)

Compound **3** (8.54 g, 54.3 mmol), was dissolved in DCM (30 mL) and conc. HCl (30 mL) was added. The mixture was stirred for 3 h and thereafter quenched with sat. NaHCO₃ (aq.). The phases were separated and the water phase was extracted twice with DCM. The combined organic phases were washed with sat. NaHCO₃ (aq.) and brine and dried over MgSO₄. Evaporation of solvent yielded **4** as a yellow oil (8.39 g, 46.9 mmol, 88%). ¹H NMR (500 MHz, CDCl₃) δ 1.96 (s, 6H), 7.29-7.36 (m, 3H), 7.42-7.47 (m, 2H). Compound **4** proved sensitive to silica and could not be definitively purified by flash chromatography and was therefore used directly in the next step following Zimmerman *et al.*⁴

(3,3-Dimethyl-5-phenylpenta-1,4-diyn-1-yl)benzene (5)

Compound **4** (8.39 g, 46.9 mmol) was added to a solution of phenylacetylene magnesium bromide (70.4 mmol) and CuCl (232 mg, 2.4 mmol), and the reaction mixture was stirred overnight. The crude product was obtained as a dark brown solid that was recrystallized in ethanol to yield **5** as off-white crystals (8.29 g, 33.9 mmol, 72%). ¹H NMR (500 MHz, CDCl₃) δ 1.70 (s, 6H), 7.27-7.31 (m, 6H), 7.43-7.47 (m, 4H). The spectral data were consistent with the literature.⁹

(3,3-Dimethyl-5-phenylcyclopenta-1,4-dien-1-yl)benzene (6)

Compound **5** (0.50 g, 2.1 mmol) was dissolved in *t*BuOH (500 mL) in an immersion well photo reactor powered by a 450 W medium-pressure mercury lamp and stirred by a magnetic stirring bar. Acetophenone (10 mL) was added as triplet sensitizer, the solution was bubbled with argon for 15 min and an argon atmosphere was kept for the whole of the experiment. The mixture was illuminated for 7 h. The solvent was evaporated and most of the acetophenone was removed by a silica plug (pentane), before the resulting oil was purified by silica flash chromatography (pentane) to yield **6** (0.15 g, 0.6 mmol, 29%) as white crystals. ¹H NMR (500 MHz, CDCl₃) δ 1.32 (s, 6H), 6.34 (2H), 7.13-7.16 (m, 4H), 7.21-7.24 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 22.8, 50.8, 126.9, 128.0, 128.3, 136.7, 142.5, 155.5.

2,3-Dimethyl-7,7-dimethyl-5,6-diphenylbicyclo[2.2.1]hepta-2,5-diene-2,3-dicarboxylate (NBD-Me₂)

Compound **6** (100 mg, 0.4 mmol) and dimethyl acetylenedicarboxylate (1.05 mL, 1.21 g, 8.5 mmol) were dissolved in fluorobenzene (5 mL). The reaction mixture was heated at 100 °C in a microwave reactor for 260 min. Evaporation of solvent and silica flash chromatography (pentane/DCM, 1:1) gave **NBD-H**₂ (125 mg, 0.3 mmol, 79%) as a pale yellow crystals. ¹H NMR (500 MHz, CDCl₃) δ 1.29 (s, 3H), 1.39 (s, 3H), 3.79 (s, 6H), 3.81 (s, 2H), 7.17-7.25 (m, 5H), 7.27-7.30 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 22.8, 23.0, 52.3, 69.1, 82.1, 127.4,

127.5, 128.5, 137.0, 146.2, 150.3, 165.9. ¹H NMR data were consistent with the literature (^{13}C data is new).⁵ HRMS calculated for C₂₅H₂₄O₄ [M+Na]⁺: *m/z* 411.1567, found 411.1564.

4-Methyl-1-phenyl-3-(propan-2-yl)pent-1-yn-3-ol (8)

2,4-Dimethyl-3-pentanone (**7**, 6.85 g, 60 mmol) in dry THF (10 mL) was added to a solution of phenylacetylene magnesium bromide (66 mmol) in THF (40 mL) under argon atmosphere. The reaction mixture was stirred at room temperature overnight before being poured into a mixture of sat. NH₄Cl (aq.) and ice. The phases were separated and the water phase was extracted twice with diethyl ether. The combined organic phases were washed with sat. NH₄Cl (aq.) and brine and dried over MgSO₄. Evaporation of solvent and excess starting material yielded **8** (12.23 g, 56.5 mmol, 94%) as off-white crystals. ¹H NMR (400 MHz, CDCl₃) δ 1.06 (d, 6H, *J* = 6.7 Hz), 1.10 (d, 6H, *J* = 6.7 Hz), 2.05 (h, *J* = 6.7 Hz, 2H), 7.28-7.32 (m, 3H), 7.41-7.45 (m, 2H). Spectral data were consistent with the literature.⁶

[3-Chloro-4-methyl-3-(propan-2-yl)pent-1-yn-1-yl]benzene (9)

Compound **8** (12.23 g, 56.5 mmol), was dissolved in DCM (20 mL) and conc. HCl (30 mL) was added. The mixture was stirred for 2 h and thereafter quenched with sat. NaHCO₃ (aq). The phases were separated and the water phase was extracted twice with DCM. The combined organic phases were washed with sat. NaHCO₃ (aq) and brine and dried over MgSO₄. Evaporation of solvent yielded a crude oil (11.98 g) that was believed to contain a mixture of

the chloride **9** and the elimination product. An NMR yield of 63% (35.88 mmol) was estimated. As the corresponding methyl compound (**4**) proved sensitive to silica, no further purification or characterization was attempted and the crude oil was used directly in the next step.

[5-Phenyl-3,3-bis(propan-2-yl)penta-1,4-diyn-1-yl]benzene (10)

The crude product containing compound **9** was added to a solution of phenylacetylene magnesium bromide (53.8 mmol) and CuCl (178 mg, 1.8 mmol) in THF (50 mL) and the reaction mixture was stirred overnight and thereafter refluxed for 5 h and stirred for 72 h at room temperature after which it was poured into a mixture of sat. NH₄Cl (aq) and ice. The phases were separated and the water phase was extracted twice with diethyl ether. The combined organic phases were washed with sat. NH₄Cl (aq) and brine and dried over MgSO₄. Evaporation of solvent and excess starting material yielded a crude oil that was purified by silica flash chromatography (pentane) to yield a mixture of two compounds with the same retention time. No further purification was attempted, and the oil was used in the next step.

[5-Phenyl-3,3-bis(propan-2-yl)cyclopenta-1,4-dien-1-yl]benzene (11)

The crude product containing compound **10** was dissolved in *t*BuOH (500 mL) in an immersion well photo reactor powered by a 450 W medium-pressure mercury lamp (lower effect due to lamp malfunction) and stirred by a magnetic stirring bar. Acetophenone (20 mL) was added as triplet sensitizer, the solution was bubbled with argon for 15 min and an argon atmosphere was

kept for the whole of the experiment. The mixture was illuminated for 48 h after which the solvent was evaporated. Most of the acetophenone was removed by a silica plug (pentane/DCM, 9:1), before the resulting oil was purified by silica flash chromatography (pentane/DCM, 9:1) to yield **11** (0.86 g, 2.9 mmol, 5% over three steps) as a transparent oil that solidified on standing. ¹H NMR (400 MHz, CDCl₃) δ 0.95 (d, *J* = 6.7 Hz, 12H), 2.30 (h, *J* = 6.7 Hz, 2H), 6.26 (s, 2H) 7.12-7.17 (m, 4H), 7.20-7.25 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 18.7, 30.2, 65.5, 126.8, 127.9, 128.2, 137.0, 140.2, 145.8. HRMS calculated for C₂₃H₂₆ [M]⁺: *m*/*z* 302.2029, found 302.2025.

2,3-Dimethyl-5,6-diphenyl-7,7-bis(propan-2-yl)bicyclo[2.2.1]hepta-2,5-diene-2,3dicarboxylate (NBD-*i*Pr₂)

Compound **11** (260 mg, 0.86 mmol) was dissolved in dimethyl acetylenedicarboxylate (2.5 mL, 2.89 g, 20 mmol). The reaction mixture was heated at 150 °C in a microwave reactor for 10 h. Evaporation of the acetylene by Kugelrohr vacuum distillation at 125 °C and 0.7 mbar yielded a solid that was purified by silica flash chromatography to yield crude yellow crystals. Further evaporation of remaining acetylene yielded **NBD**-*i***Pr**₂ as yellow crystals (260 mg, 0.58 mmol, 68%). ¹H NMR (400 MHz, CDCl₃) δ 0.94(br. d, *J* = 7.0 Hz, 6H), 2.21 (br. m, 1H), 2.60 (m, 1H), 3.78 (s, 6H), 4.08 (s, 2H), 7.15-7.26 (m, 6H), 7.30-7.35 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 52.2, 65.7, 93.3, 127.3, 127.6, 128.5, 136.8, 147.2, 151.1, 165.6. The peaks associated with the *i*Pr substituents are missing in the ¹³C NMR spectrum and broadened in the ¹H NMR spectrum. It is probable that this is due to hindered rotation. A broad hump in the δ 19.5-32.4 region of the ¹³C NMR spectrum may harbour the missing peaks. HRMS calculated for C₂₉H₃₂O₄ [M+Na]⁺: *m/z* 467.2193, found 467.2193.

3 Variable temperature NMR experiments

Variable temperature NMR spectra were recorded in CDCl₃ on a Bruker Avance III HD 18.8 T NMR spectrometer (Rheinstetten, Germany) equipped with a 5 mm TXO Cryoprobe.

Figure S1. NOESY spectrum at -30°C for **NBD***-i***Pr**₂. Chemical exchange peaks in red and peaks due proximity and the nuclear Overhauser effect in blue.

Figure S2. NOESY spectrum at 45°C for **NBD-***i***Pr**₂. Chemical exchange peaks in red and peaks due proximity and the nuclear Overhauser effect in blue.

Figure S3. NOESY spectrum at -30° C for **NBD**-*i***Pr**₂ between 0 and 4.5 ppm. Yellow boxes indicate weak cross peaks between bridgehead protons and the methyl protons of the *i*Pr groups that are not present in the corresponding QC spectra. Chemical exchange peaks in blue and peaks due proximity and the nuclear Overhauser effect in red.

Figure S4. NOESY spectrum at 45°C for **NBD-***i***Pr**₂ between 0 and 4.5 ppm. Yellow boxes indicate weak cross peaks between bridgehead protons and the methyl protons of the *i*Pr groups that are not present in the corresponding QC spectra. Chemical exchange peaks in blue and peaks due proximity and the nuclear Overhauser effect in red.

Figure S5. NOESY spectrum at -30°C for **NBD**-*i***Pr**₂ between ca 0 and 8 ppm. Yellow boxes indicate weak cross peaks between bridgehead protons and aromatic protons that are not present in the corresponding QC spectra. Chemical exchange peaks in blue and peaks due proximity and the nuclear Overhauser effect in red.

Figure S6. NOESY spectrum at 45°C for **NBD-***i***Pr**₂ between ca 0 and 8 ppm. Yellow boxes indicate weak cross peaks between bridgehead protons and aromatic protons that are not present in the corresponding QC spectra. Chemical exchange peaks in blue and peaks due proximity and the nuclear Overhauser effect in red.

4 Quantum yields

NBD-H₂, **NBD-Me**₂ and **NBD-***i***Pr₂ were irradiated under magnetic stirring at 334 nm using a Fluorolog 3 instrument (Horiba Jobin Yvon) equipped with a double-grating excitation monochromator (slit width of 2 nm) and a 450 W Xe lamp as the light source. Irradiation was interrupted with 30-240 seconds intervals and absorption at 334 nm was measured by a Varian Cary 5000 UV-Vis spectrometer. A total of 10-11 points were taken for each experiment. Total experiment times varied from 9 to 20 min. The resulting spectra show isosbestic points, indicating clean photoreaction (Figure S7 to Figure S9). For these short experiment times, the thermal back conversion to the QC form can be neglected (***cf.* **experimental half-life values). As the QC isomer does not absorb at 334 nm, the quantum yield could be determined following Wirz and Klan by linear fitting according to:¹⁰**

$$\Phi = \frac{V \log \left(\frac{10^{A_0} - 1}{10^{A_r} - 1}\right)}{ltq_{m,p}^0 \varepsilon}$$

where V is the volume in cm³, *t* is the time in seconds $q^{0}_{m,p}$ is the photon flux in amount basis in mol s⁻¹, e is the molar absorption coefficient in mol⁻¹ dm³ cm⁻¹, A_0 is the absorbance at t = 0s and A_t is the absorbance at time *t*.

The photon flux was measured by the azobenzene actinometer through the method of Gauglitz and Hubig.¹¹ The photon flux in amount basis, $q^{0}_{m,p}$ in mol s⁻¹ was determined by a linear fit to the formula

$$q_{m,p}^{0} = F(\lambda) \times \frac{\left|\Delta A(358)\right|}{t} \times \frac{V}{l}$$

where *t* is the time in s, *V* is the volume of the sample solution in cm³ and *l* is the length of the cell in cm. The factor $F(\lambda)$ has the value of 3.60 10⁻⁶ mol s⁻¹ cm⁻² for 334 nm. A methanol solution of commercially available *trans*-azobenzene (Sigma Aldrich) with absorbance of ca 1.0 at 358 nm was irradiated at 334 nm under the same conditions as detailed above. The change in absorbance at 358 nm was monitored with illumination times that changed the absorbance with ca 0.02 units per interval with ca 8 data points taken in total. Total experiment time was ca 21 min. Photon flux was measured before and after each measurement series (length of up to 4 h) and the average photon flux was used. The values varied at most 3%. The light intensity at 334 nm was also monitored by an internal reference detector in the Fluorolog 3 instrument and this variation was consistent with that of the measured photon flux values.

Figure S7. Absorption spectrum of NBD-H₂ during irradiation at 334 nm.

Figure S8. Absorption spectrum of NBD-Me2 during irradiation at 334 nm.

Figure S9. Absorption spectrum of NBD-*i*Pr₂ during irradiation at 334 nm.

5 Kinetics of thermal back-conversion

Toluene solutions containing **NBD-R**₂ (R = H, Me, *i*Pr) were irradiated at 365 nm using a 365 nm LED (Thorlabs, M365F1 - 365 nm, 3.0 mW (Min), 700 mA), and the thermal back-reaction was followed with a Cary 100 UV-Vis spectrophotometer at 350 nm, where the temperature was monitored on the block holding the cells. The resulting data were fitted to first-order kinetics. From the rate constants at 5 different temperatures (25, 40, 50, 60, 70 °C), the enthalpies and entropies of activation were calculated using the Eyring equation.

Figure S10. Eyring plots of the thermal back conversion of QC to NBD in toluene (a: NBD-H2, b: NBD-Me2, c: NBD-iPr2).

Table S1. Eyring parameters and half-lives at 25°C for the thermal back conversion of QC-H₂,

Compound	t _{1/2} @298K	ΔH^{\ddagger} (kJ/mol)	ΔH^{\ddagger} (kcal/mol)	ΔS^{\ddagger} (J/K mol)
NBD-H ₂	6.3 hours	89.5	21.40	-31.1
NBD-Me ₂	7.7 hours	89.7	21.45	-32.2
NBD- <i>i</i> Pr ₂	56 hours	90.7	21.69	-45.3

6 Extinction coefficients

Absorption coefficients were determined by repeated measurement. The data are found in the

Table S2.

Table S2. Measured values of the absorption coefficients in M ⁻¹ cm	1 ⁻¹ .
--	-------------------

	NBD-H ₂	NBD-Me ₂	NBD- <i>i</i> Pr ₂
	2359	2196	1951
	2372	2142	1977
	2315	2200	1962
Average	2349	2179	1958
Std. dev.	30	32	15

7 Differential scanning calorimetry of quadricyclanes

NBD-H₂, **NBD-Me**₂ and **NBD-iPr**₂ (ca. 15 mg) were dissolved in deuterated acetonitrile or chloroform (ca. 3 mL). The solution was irradiated for ca. 2 hours using a Osram Powerstar HQI-R 150 W metal halide lamp, and the conversion to QC monitored using ¹H NMR spectroscopy. The solvent was evaporated, and ca. 1 mg of the obtained quadricyclane was sealed in a 40 µl aluminum pan. DSC was run performing a double cycle of heating (at 10 °C/min from 0 to 180°C) and cooling (at 40 °C/min from 180 to 0°C). Each measurement was performed twice with good agreement. The endothermic peaks were integrated, and the value normalized by the mass of QC to give the values reported in the main text. DSC thermograms are shown in Figure S11 to Figure S13.

Figure S11. DSC thermogram showing the heat release peak for the thermal back-conversion of **QC-H**₂ to **NBD-H**₂.

Figure S12. DSC thermogram showing the heat release peak for the thermal back-conversion of **QC-Me2** to **NBD-Me2**.

of QC-*i*Pr₂ to NBD- *i*Pr₂.

8 Test of photoconversion in sun-like conditions in a demonstrative device

The testing device functions as a flow reactor that allows for continuous harvesting of solar energy (Figure S14). It is made of a fused silica chip (Litcon) containing a 60 μ m deep and 3.5 mm wide winding channel, forming a total irradiated area of about 400 mm². The chip was held in place with a custom made 3D printed holder. A full spectrum solar simulator (EYE Solar Simulation System, Class B/C) was used during the experiments to reproduce the solar irradiation (\approx 1 sun, AM 1.5). A Sciencetech sun calibrated reference detector was used to

measure the intensity of the solar simulator lamp. A syringe pump (Fisher Scientific) was used to regulate the flow.

NBD-iPr² was dissolved in deuterated toluene (50 mM) and the conversion to the QC isomer after passing through the collector (2 mL/h, 41 s residence time) was measured by comparing the relative intensity of the ¹H NMR peaks associated to the two isomers (64% conversion to QC, measured in two independent experiments).

Figure S14. Photo of the fabricated device, which was used to test the performance of **NBD**-*i***Pr**₂.

To calculate the solar energy storage efficiency (η_{MOST}), the following equation was used:¹²

$$\eta_{MOST} = \frac{\dot{n}_{NBD} \cdot \alpha_{QC} \cdot \Delta H_{storage}}{A \times E_{AM1.5}}$$

Where α_{QC} is the measured conversion to the QC isomer after irradiation, $\Delta H_{\text{storage}}$ is the stored energy of the QC isomer relative to the NBD isomer (in J/mol), \dot{n} is the flow speed (in mol s⁻¹), *A* the irradiated area (in m⁻²), and *E*_{AM1.5} is the energy of incoming solar radiation (in W m⁻²).

9 Computational

9.1 Photochemical calculations

9.1.1 Methods

For the photochemical calculations, we employed state-average CASSCF using a development version of Molcas 8.1 and the 6-31G(d) basis set. **P-R**₂ has four π molecular orbitals and the

natural choice of an active space would therefore be four electrons in four orbitals, as was done by Roos in studying the absorption spectrum and Antol in studying the photorelaxation pathways of P-H₂.^{13,14} However, we found that a 4in4 active space lead to near-statedegeneracies or state crossings that disappeared at the MS-CASPT2^{15,16} level and caused problems during optimizations (Figure S15). This problem was not present for Antol using MR-CIS optimizations. An active space of 2in2 did not generate this problem and gave results that were similar to those obtained from MS-CASPT2(4in4). A 2in2 active space should be sufficient to describe the CIs as the NBD system can be described within the two-electron twoorbital model of homosymmetric and heterosymmetric biradicaloids established by Michl and co-workers.¹⁷ The smaller active space also allowed us to treat **NBD-H**₂ and **NBD-Me**₂.

Figure S15. Comparison of CASSCF and MS-CASPT2 with 4in4 active space on linear interpolation path between FC geometry to the S_1 minimum geometry for **NBD-H**₂.

Conical intersections (CIs) were optimized and characterized at the 2-SA-CASSCF(2in2)/6-31G(d) level using a development version of Molcas 8.1 and the procedures described by Lindh and co-workers. ¹⁸Relaxation from the CI structures to the NBD and QC minima were confirmed by minor perturbation from the CI structure along the relaxation vector obtained from the CI characterization followed by minimum energy path calculations on the lower surface. Minima on the S₁ surface were instead optimized with 3-SA-CASSCF(2in2) as comparison to MS-CASPT2(4in4) showed that the these minima were too deep at the 2-SA-CASSCF(2in2) level.

The orbitals included in the active space are shown in Figure S16 to Figure S18 for active spaces of 2in2 and 4in4. Note that the active space orbitals of the 2in2 set can be equally well described as localized or delocalized.¹⁷ During our calculations different sets of delocalized and localized orbitals could be obtained for very similar structures. Although this shift does not affect the energies, the character of the states (doubly excited, singly excited etc.) changes when the orbital set is transformed and care has to be taken to ensure the identity of the states.

3-SA-CASSCF(2in2)

Figure S16. State-average active space orbitals for **P-H**₂ with 2in2 and 4in4 active spaces plotted at 0.05 isodensity surface. The DFT-optimized geometry of the ground state NBD isomer is used.

Figure S17. State-average active space orbitals for **DA-H**₂ with 2in2 and 4in4 active spaces plotted at 0.05 isodensity surface. The DFT-optimized geometry of the ground state NBD isomer is used.

Figure S18. State-average active space orbitals for **NBD-H**² with 2in2 and 4in4 active spaces plotted at 0.05 isodensity surface. The DFT-optimized geometry of the ground state NBD isomer is used.

The calculated excitation energy for NBD-H₂ is 4.01 eV with 3-SA-MS-CASPT2(4in4)/6-31G(d) and 3.75 eV with 3-SA-MS-CASPT2(2in2)/6-31G(d), in fair agreement with the experimental value of 3.64 considering the small basis set and that no solvent model was used. We are thus confident that an active space of 2in2 is sufficient for describing the S₁ PES from the Franck-Condon region to the CI for the compounds considered.

NPA charges were calculated from the densities of the state-specific natural spin orbitals from Molcas using the Molden2aim 4.0.2 program¹⁹ and NBO6.²⁰

9.1.2 Conical intersections

Characterization

To characterize the conical intersections (CIs), we used the methodology described by Lindh and co-workers.¹⁸ This description can be used to investigate relaxation pathways from a CI in the absence of dynamic effects. In particular, the gradients of the electronic states at the conical intersection can be plotted as a function of the polar coordinates r and θ of the branching plane (the plane for which the degeneracy of the states is broken). We focused on the gradients of the lower state, which gives information on the relaxation pathways from the CI. In particular, the CI can be described as single-path or bifurcating, depending on if there is only one preferred direction of relaxation or two (within the linear model). The relaxation pathways show up as minima in the plot and the θ value at the minimum gives the direction of relaxation. Minimum energy path calculations on the lower energy surface starting from small displacements along the relaxation directions can then confirm that the pathway leads to the correct minimum on the lower energy surface. The relative height of the two minima for a bifurcating CI gives an indication of which pathway is preferred over the other.

For **P-R**₂, relaxation to the NBD isomer is preferred (Figure S19), in agreement with the experimental quantum yield of ca. 0.05 for **P-H**₂. As R changes from H to *t*Bu, the gradient difference between the two pathways decreases, indicating that the increased steric pressure favors the pathway forming the QC isomer. For **DA-R**₂, the gradient difference is much smaller, in line with the experimental quantum yield of 0.68 for **DA-H**₂ (Figure S20). Increasing steric bulk again favors relaxation to the QC isomer, and for **DA-***t***Bu**₂ it is actually preferred. For **NBD-R**₂, the NBD isomer is preferred for R = H and the QC isomer for R = Me (Figure S21). This relative change in gradients is consistent with the increase in experimental quantum yield going from **NBD-H**₂ to **NBD-Me**₂.

Figure S19. Gradient of the lower electronic state as a function of the angular coordinate θ for the CI of **P-R**₂. Relaxation from minimum close to π leads to NBD and from minimum close to 2π to QC.

Figure S20. Gradient of the lower electronic state as a function of the angular coordinate θ for the CI of DA-R₂. Relaxation from minimum close to π leads to NBD and from minimum close to 2π to QC.

Figure S21. Gradient of the lower electronic state as a function of the angular coordinate θ for the CI of **NBD-R**₂ with R = H and Me. Relaxation from minimum close to π leads to NBD and from minimum close to 2π to QC.

Relation to energy storage and extent of bond formation

The difference in gradient between the minima can be correlated to the storage energy and extent of bond formation according to the Hammond postulate (see also section 9.4.2.1). The extent of bond formation was calculated as an average of the two forming bonds at the TS and CI structures for **P-R₂**, **DA-R₂** and **NBD-R₂** (Table S3). These were calculated according to the formula in Figure S22. Note that these values are given at different levels of theory (DFT for the TS and CASSCF for the CI) and that comparison of absolute values should therefore be made with caution. The trend is, however, that the CI structure is less affected than the TS structure by the steric bulk.

Table S3. Extent of average bond formation in TS and CI structures. TS geometries at the PBE-D3(BJ)/6-31+G(d,p) and the CI geometries at the CASSCF(2in2)/6-31G(d) levels. Both evaluated against PBE-D3(BJ)/6-31+G(d,p) NBD and QC geometries.

P-R ₂	Н	Me	iPr	tBu
TS	50%	48%	47%	43%
CI	56%	55%	54%	51%
DA-R ₂				
TS	54%	53%	52%	46%
CI	53%	53%	52%	49%
NBD-R ₂				
TS	53%	52%	50%	45%
CI	55%	54%	-	-

Avg. bond formation = $(|r_{1,TS} - r_{1,NBD}|/|r_{1,QC} - r_{1,NBD}| + |r_{2,TS} - r_{2,NBD}|/|r_{2,QC} - r_{2,NBD}|)/2$

Figure S22. Formula for calculation of average bond formation.

The gradient difference is linearly correlated to the extent of bond formation (Figure S23). As discussed in the manuscript, this is probably due to that the ground state TS position on the reaction coordinate is more affected by the steric bulk than the CI position. Correlation between gradient difference and storage energy is very similar (Figure S24).

Figure S23. Correlation between bond formation in the TS at the PBE-D3(BJ)/6-31+G(d,p) level and gradient difference between the relaxation minima at the CI geometry at the CASSCF/6-31G(d) level.

Figure S24. Correlation between storage energy at the PBE-D3(BJ)/6-31+G(d,p) level and gradient difference between the relaxation minima at the CI geometry at the CASSCF/6-31G(d) level.

9.2 MEPs and linear interpolations

Minimum energy structure and its photochemical influence

A minimum energy path calculation for **DA-H**₂ at the 3-SA-CASSCF(2in2)/6-31G(d) level led to a S₁ minimum energy structure that was confirmed by numerical frequency calculations. Although two imaginary frequencies associated with rotation of the vinylic methyl groups were found, perturbation of the molecule along these modes and subsequent optimization lead back to the same minimum structure. We conclude that the imaginary frequencies associated with this methyl group rotations are due to the small energy barrier for rotation caused by lack of dispersion forces in CASSCF and/or inaccuracies in the numerical frequencies. Therefore, they can be excluded for the purpose of confirming the minimum structure.

Corresponding minima were found also for **DA-Me**² and **DA-***i***Pr**² but not for **DA-***t***Bu**², for which all minimizations instead lead to the CI structure region. For **NBD-H**² and **NBD-Me**² the optimization also lead to a similar structure, although these structures could not be confirmed by frequency calculations due to the large size of the systems. We also located a minimum for **P-H**².

As the excess energy from vertical excitation to the FC region is always much larger than the well-depth both with and without dynamical correlation, the minimum is not likely to be populated and should not affect the photochemistry (Table S4).

 Table S4. Excess energies from vertical excitation and well depths at 3-SA-CASSCF(2in2)

 and 3-SA-CASPT2(2in2) in kcal/mol.

CASSCF	CASPT2
29.0	24.4
28.2	12.6
30.1	14.5
0.4	0
2.1	0.3
3.2	2.1
	CASSCF 29.0 28.2 30.1 0.4 2.1 3.2

Linear interpolations

Linear interpolation in internal coordinates (LIIC) was carried out on structures that had first been aligned using the RMSD procedure in VMD 1.9.2.²¹ Including initial and final structures, 21 structures were generated.

The LIICs from the FC points (DFT-optimized ground state geometries) to the CI structures (optimized with 2-SA-CASSCF(2in2)) for **P-H₂**, **DA-H₂** and **NBD-H₂** are shown in Figure S25 to Figure S27. The results at the 3-SA-CASSCF(2in2) 3-SA-MS-CASPT2(4in4) levels show that the S₁ state is consistently well-separated from the S₂ state along this path and that 3-SA-CASSCF(2in2) is qualitatively correct. There is also no barrier present.

The LIICs from the optimized S₁ minimum structures for **P-H₂**, **DA-H₂** and **NBD-H₂** are shown in Figure S28 to Figure S30. At the 3-SA-CASSCF(2in2) level there is a small barrier of ca 2-3 kcal/mol which mostly disappears at the 3-SA-CASPT2(2in2) level. We opt to use this level of theory near the minimum region as the state interaction is very large for 3-SA-MS-CASPT2(4in4) and that the results are therefore not reliable. Increased steric bulk in **DA-Me₂**, **DA-iPr₂** and **NBD-Me₂** reduces the barrier height (Figure S31 and Figure S32), but this is unlikely to have any effect on the experimental outcome as the barrier is small compared to the excess thermal energy received upon vertical excitation. Also, as shown in the FC-CI interpolations, there are barrier-less pathways from FC to the CI and the barrier on the interpolation is an upper bound for the minimum barrier to the CI.

Finally, the combined LIICs from the FC point to the S_1 minimum and from there to the CI point give a full picture of the S_1 relaxation of the system (Figure S33 to Figure S35).

Figure S25. LIIC pathway from FC geometry to the optimized CI geometry for P-H₂.

Figure S26. LIIC pathway from FC geometry to the optimized CI geometry for DA-H₂.

Figure S27. LIIC pathway from FC geometry to the optimized CI geometry for NBD-H₂.

Figure S28. LIIC pathway from S1 minimum geometry to the optimized CI geometry for P-

Figure S29. LIIC pathway from S_1 minimum geometry to the optimized CI geometry for

 $DA-H_2.$

Figure S30. LIIC pathway from S_1 minimum geometry to the optimized CI geometry for

NBD-H₂.

Figure S31. LIIC pathway for the S_1 state from the S_1 minimum geometry to the optimized CI geometry for **DA-R**₂ with R=H, Me and *i*Pr.

Figure S32. LIIC pathway for the S_1 state from the S_1 minimum geometry to the optimized CI geometry for **NBD-R**₂ with R=H and Me. The energy rise at the last points at the CASPT2 level is due to that the CI position has a slightly different geometry at this level than that used for optimization.

Figure S33. LIIC pathway from the FC geometry to the optimized CI geometry via the S_1 minimum for **P-H**₂. The vertical bar represents the S_1 minimum geometry.

Figure S34. LIIC pathway from the FC geometry to the optimized CI geometry via the S_1 minimum for **DA-NBD-H**₂. The vertical bar represents the S_1 minimum geometry.

Figure S35. LIIC pathway from the FC geometry to the optimized CI geometry via the S_1 minimum for **NBD-H**₂. The vertical bar represents the S_1 minimum geometry.

9.3 TD-DFT calculations

We benchmarked our TD-DFT method against the excitation energies of the NBD compounds reported by Gray *et al.* compounds (Table S5).²² Geometries were optimized with PBE-D3(BJ)/6-31+G(d,p) and TD-DFT calculations were performed using the CAM-B3LYP and LC- τ HCTH functionals with the 6-311+G(2d,p) basis set. The experimental data were taken from the ε_{max} values of ref 22. The performance of LC- τ HCTH is very good with a MAD of only 0.11 kcal/mol over the set, which is below half the error of CAM-B3LYP. While CAM-B3LYP consistently underestimates the absorption energies, LC- τ HCTH is more balanced with some overestimations and some underestimations.

Table S5. Calculated $S_0 \rightarrow S_1$ excitation energies in eV with TD-DFT and different functionals compared to experiment ($\Delta = \text{Exc.}(\text{Exp.}) - \text{Exc.}(\text{TD-DFT})$). Solvent effects were included by the SMD solvent model and toluene as the solvent.

	CAM-	B3LYP	LC-τl	НСТН	Exp.
Compound	Exc.	Δ	Exc.	Δ	Exc.
a	3.75	-0.28	3.95	-0.08	4.03
b	3.66	-0.35	3.87	-0.14	4.01
с	3.53	-0.37	3.77	-0.13	3.90
d	3.35	-0.19	3.61	0.07	3.54
e	3.28	-0.12	3.55	0.15	3.40
MAD	0.	26	0.	11	
MSD	-0	.26	-0	.03	

9.4 Storage energies and transition state calculations

9.4.1 Storage energies

To validate our computational scheme for storage energies, we compared against the high-level composite method CBS-QB3.²³ Unfortunately, this method cannot be used for the **NBD-R**₂ series as the molecules are too big. Instead we chose the DFT method which performed best for **P-R**₂ and for **DA-R**₂ with R = H and Me. In this way we assess both the effects of increasing steric bulk, and the presence of donor and acceptor groups. The results (Table S6) show that

PBE-D3(BJ) heavily underestimates ΔH for the parent system. B3LYP²⁴ does a good job for the parent system but overestimates ΔH for the DA model. On average, CAM-B3LYP has a small underestimation of ΔH for the parent system (2.2-3.3 kcal/mol) but is accurate for the DA model (1.2-1.3 kcal/mol underestimation). As it is also a good performer for the activation energies, we chose CAM-B3LYP-D3(BJ) for the calculations on the **NBD-R**₂ compounds.

Table S6. Storage enthalpies with different methods and the difference to the reference CBS-QB3 data. Geometries are optimized with PBE-D3(BJ)/6-31+G(d,p). B3LYP and CAM-B3LYP-D3(BJ) use the 6-311+G(d,p) basis set and the vibrational contributions from PBE-D3(BJ). Values in kcal/mol.

	CAM-B3	SLYP-D3(BJ)	PBE-D	03(BJ)	B3I	LYP	CBS-QB3	Exp.
P-R ₂	ΔH	Δ	ΔH	Δ	ΔH	Δ		
Н	20.6	-2.2	15.7	-7.1	23.1	0.3	22.8	22.0 ± 0.3
Me	16.5	-2.4	12.8	-6.1	18.7	-0.2	18.9	
<i>i</i> Pr	13.2	-2.3	9.7	-5.9	15.0	-0.6	15.6	
<i>t</i> Bu	-5.0	-3.3	-7.6	-5.9	-2.6	-0.9	-1.7	
DA-R ₂								
Н	20.0	-1.2	18.0	-3.2	24.3	3.1	21.3	
Me	17.1	-1.3	16.1	-2.3	22.7	4.2	18.5	

9.4.2 Transition state calculations

9.4.2.1 Transition state optimizations

Activation energies were calculated by broken-symmetry unrestricted DFT. This method can treat biradical transition states in some cases but should be properly benchmarked against multi-reference high-level methods. ²⁵ We located the TS for **P-H**₂ with UB3LYP/6-31G(d) and calculated the intrinsic reaction coordinate (IRC) leading from the TS to the NBD and QC isomers. In Figure S36 we display the S₀ IRC together with the energy of the T₁ state and the spin contamination ($\langle S^2 \rangle$) of the UDFT wave function. The spin contamination increases to ca 1 in the area of the TS, where the S₀ and T₁ states become degenerate. This spin contamination affects the calculated S₀ energy and makes it artificially high. As a consequence, the TS area is

too flat with B3LYP. Application of Yamaguchi's spin-projection formula²⁶ removes some of this spin contamination and reveals a sharper TS, although it does not give a smooth curve.

Figure S36. S_0 and T_1 energies along the IRC for **P-H**₂ from TS structure to QC (left) and NBD (right) with (U)B3LYP/6-31G(d). Spin-projected energies for the S_0 state are also given.

The shape of the IRC was validated by computing it also using CASSCF(4in4)/6-31G(d) (Figure S37). The position of the TS is the same, as revealed by the almost identical curves using the CASSCF IRC and doing single-point CASSCF calculations on the B3LYP IRC. However, B3LYP gives a to flat TS region, especially on the QC side, due to spin contamination (*vide supra*). That the CASSCF single-point energies on the B3LYP IRC gives nearly the same result as the true CASSCF IRC confirms the reliability of using UDFT for obtaining the IRC.

Figure S37. IRC for **P-H**₂ from TS structure to QC (left) and NBD (right) computed with CASSCF and B3LYP. CASSCF single-point energies are computed at the B3LYP IRC coordinates.

Comparison between UB3LYP and UPBE and CASPT2(4in4)/6-31G(d) single-point energies on the UB3LYP IRC shows that UPBE has an IRC shape which is closer to that from CASPT2 (Figure S38). This is probably due to a lower amount of spin contamination for the pure DFT functional as compared to the hybrid UB3LYP. In addition, the IRC is less flat, which facilitates finding the transition state computationally. Therefore, we chose UPBE as the method of choice for TS optimizations.

Figure S38. IRC shapes for **P-H**₂ with various methods from single-point calculations on the UB3LYP IRC.

We then validated the UPBE method by calculating the IRC for **DA-H**₂ (Figure S39). Also here the IRCs from UDFT are too flat as compared to CASPT2 (in this case, multi-state CASPT2(4in4)/6-31G(d) with a state-average over the lowest three singlet states). As for **P-H**₂, UPBE gives an IRC more similar to CASPT2 and the position of the TS is also correct.

Figure S39. IRC shapes for **DA-H**₂ with various methods from single-point calculations on the UB3LYP IRC.

The position of the TSs can be correlated to the energy difference between the two isomers at the same level of theory (Figure S40). This is in accordance with the Hammond postulate that states that the structure of the TS is closer to that minimum which is higher in energy. As the energy of the QC isomer moves closer to the energy of the NBD isomer, the structure also changes to be more like the NBD isomer. This takes expression as a lower extent of C---C bond formation in the TS as evidenced in Figure S40.

Figure S40. Correlation between storage energy and average bond formation at the TS at the PBE-D3(BJ)/6-31+G(d,p) level.

9.4.2.2 Activation energies

We compared the computed activation energies against high-level UBD(T)²⁷ calculations which can properly handle biradical transition states (Table S7).²⁵ A broken-symmetry HF orbital guess for the UBD(T) calculations was obtained with the guess=mix keyword in Gaussian. The experimental activation *enthalpy* for the parent system is included for comparison.²⁸ On balance, the DFT methods give reasonable activation energies, with UCAM-

B3LYP-D3(BJ) and UB3LYP-D3(BJ) underestimating the activing energy by 1-4 kcal/mol. UPBE-D3(BJ) is slightly more accurate.

Table S7. Calculated activation energies for QC \rightarrow NBD reaction with different computational methods. UPBE-D3(BJ)/6-31+G(d,p) geometries were used. The 6-311+G(d,p) basis set was used for UB3LYP, UCAM-B3LYP-D3(BJ) and UBD(T).

	UCAM-B3L	YP-D3(BJ)	UPBE	-D3(BJ)	UB3	LYP	UBD(T)	Exp.
	ΔE^{\ddagger}	Δ	ΔE^{\ddagger}	Δ	ΔE^{\ddagger}	Δ	ΔE^{\ddagger}	ΔH^{\ddagger}
P-H ₂	33.6	-0.7	36.3	2.0	32.5	-1.7	34.2	33.5
DA-H ₂	26.7	-3.0	27.8	-1.9	25.3	-4.4	29.7	

UCAM-B3LYP-D3(BJ) and UPBE-D3(BJ) were also benchmarked against the experimental activation enthalpies reported by Gray *et al.* with excellent results (Figure S41).^{22,29} There is an underestimation of the activation enthalpies by a few kcal/mol, consistent with the benchmark calculations in Table S7. For these particular compounds, UPBE-D3(BJ) performs even better than UCAM-B3LYP-D3(BJ), but the latter is still our method of choice as it can also be used to calculate accurate storage enthalpies. It can be noted in Figure S41 that both methods outperform the more complex CASPT2 calculations by Kuisma *et al.*²⁹ Finally we find that the solvent dependence is small as evidenced by the negligible effect of changing from the gas-phase to either toluene ($\varepsilon = 2.4$) or acetonitrile ($\varepsilon = 35.7$), as would be expected for a biradical mechanism (Table S8).

Figure S41. Calculated activation enthalpies for Gray compounds with various methods. The CASPT2 values neglect vibrational contributions as explained in the original reference.

Table S8. Calculated activation enthalpies for QC \rightarrow NBD reaction with different solvents with

CAM-B3LYP-D3(BJ)/6-311+G(d,p)//PBE-D3(BJ)/6-31+G(d,p) and the SMD solvent model.

	Gas-phase	Toluene	Acetonitrile
NBD-H ₂	19.4	19.6	19.6
NBD-Me ₂	19.1	18.9	19.0
NBD- <i>i</i> Pr ₂	19.9	19.8	19.8

9.5 Character of S₁ homoaromatic minimum

9.5.1 Multicenter indices

The multicenter index (MCI) is a particular extension of the I_{ring} index³⁰ defined as:

$$I_{ring}(\mathcal{A}) = \sum_{i_1, i_2, \dots, i_N}^{NSO} n_{i_1} \dots n_{i_N} S_{i_1 i_2}(A_1) S_{i_2 i_3}(A_2) \dots S_{i_N i_1}(A_N)$$
(1)

 n_i being the occupancy of molecular orbital *i*. This expression is used both for closed-shell and open-shell species, and single-determinant and correlated wavefunctions. In this latter case, natural spin orbital (NSO) occupations and overlaps are used in eqn (1). $S_{ij}(A_1)$ are the elements of the atomic overlap matrix of the NSO integrated over the region of the atom A_1 defined in the framework of the quantum theory of atoms in molecules (QTAIM).³¹ Summing up all I_{ring} values resulting from the permutations of indices A_1 , A_2 ... A_N , the mentioned MCI index³² is obtained:

$$MCI(\mathcal{A}) = \frac{1}{2N} \sum_{P(\mathcal{A})} I_{ring}(\mathcal{A})$$
⁽²⁾

where P(A) stands for a permutation operator which interchanges the atomic labels A_1 , A_2 , ..., A_N to generate the N! permutations of the elements in the string A. MCI is obtained with the ESI-3D program³³ MCI gives an idea of the electron sharing between all atoms in the ring. The more positive the MCI values for a given ring, the more aromatic the ring is. In this work, the NSO occupations are obtained from state-averaged CASSCF calculations.

9.5.2 NICS scans

We also performed NICS scans using Dalton2016.0. Here we used state-specific CASSCF with the 6-31G(d) and 6-31++G(d,p) basis sets. Although single-point NICS values³⁴ and ringcurrents³⁵ have previously been used to characterize the aromaticity of excited states, the magnetic properties of aromatic molecules in the excited states are not well understood. We therefore believe that the results should only be taken as qualitative and it is highly recommended to also employ another type of aromaticity index besides NICS. That being said, the S₁ NICS_{zz} scans of P-H₂, DA-H₂ and NBD-H₂ show the characteristic aromatic minima (Figure S42a). The NICS(1)_{zz} values are -100.2 ppm for P-H₂, -132.8 ppm DA-H₂ and -68.4 ppm for NBD-H₂ with the 6-31G(d) basis set. The relative aromaticity given by NICS is therefore DA-H₂ > P-H₂ > NBD-H₂, which does not agree with MCI which gives P-H₂ > DA-H₂ > NBD-H₂ As explained above, S₁ NICS should probably not be trusted for quantitative information and the relative order given by MCI is therefore more trustworthy. The effect of increasing the basis set size from the rather small 6-31G(d) to 6-31++G(d,p) which includes diffuse functions is not large and does not change the qualitative results (Figure S42b). Unfortunately, **NBD-H**₂ was too big to calculate with the larger basis set. Increasing the active space size from 2in2 to 4in4 does have a significant effect on **P-H**₂ while **DA-H**₂ is less affected (Figure S43). It can be presumed that **NBD-H**₂ will behave similar as **DA-H**₂ as both are donor-acceptor NBDs. Importantly, the qualitative assessment of aromaticity is not changed as there is still a distinct minimum.

Figure S42. S_1 NICS scans with state-specific CASSCF(2in2) and the (a) 6-31G(d) and (b) 6-31++G(d,p) basis sets.

Figure S43. Dependance of active space size for S₁ NICS scans with CASSCF/6-31G(d) for (a) **P-H**₂ and (b) **DA-H**₂.

Figure S44. Gradient of the lower electronic state as a function of the angular coordinate θ for the CI of **MQ-R**₂ with R = H and Me. Relaxation from minimum close to π leads to NBD and from minimum close to 2π to QC.

9.7 Coordinates and energies of the compounds

Below are coordinates and energies for minima and transition states optimized at the (U)PBE-

D3(BJ)/6-31+G(d,p) level of theory. Conical intersection structures are given at the 2-SA-CASSCF(2in2)/6-31G(d) level.

P-H ₂			P-H ₂				
NBD is	somer						
Symme	etry: C_{2v}						
Electro	onic energy:	-271.1526959	918				
С	1.24558	0.67398	-0.52114				
С	0.00000	1.12671	0.27381				
С	-0.00000	-1.12671	0.27381				
С	1.24558	-0.67398	-0.52114				
С	-0.00000	-0.00000	1.35626				
Н	-0.90844	-0.00000	1.98115				
Н	0.90844	0.00000	1.98115				
С	-1.24558	0.67398	-0.52114				
С	-1.24558	-0.67398	-0.52114				
Н	0.00000	2.16994	0.61950				
Н	-0.00000	-2.16994	0.61950				
Н	-1.93640	-1.34928	-1.02928				
Н	-1.93640	1.34928	-1.02928				
Н	1.93640	-1.34928	-1.02928				
Н	1.93640	1.34928	-1.02928				
	11/2010	1.0 1720	1102/20				
P-H ₂							
OC iso	mer						
Symme	etry: Con						
Electro	nic energy.	-271 1272180	008				
C	0.76139	0 77602	-0 71189				
C	0.00000	1 15396	0 55341				
C	-0.00000	-1 15396	0 55341				
C	0.76139	-0 77602	-0 71189				
C	0.00000	0.00000	1 54316				
н	-0.89909	0.00000	2 18475				
н	0.89909	-0.00000	2.10475				
C II	-0.76139	0.77602	-0 71189				
C	-0.76139	-0.77602	-0 71189				
ч	0.00000	2 10768	0.870/5				
и Ц	0.00000	2.19708	0.87945				
и и	1 45800	1 43263	1 23572				
и П	1 45800	1 43263	1 23572				
и П	1 45800	1.43263	1 23572				
п U	1.45800	-1.43203	-1.23372				
п	1.43600	1.43203	-1.23372				
р те і	Π.						
Transit	12						
Transit Summer	ton state						
Flootro	$cuy. C_s$	271 060414	704				
$\leq \mathbf{S}^2 \geq -$	1 0002	-2/1.009414	/94				
$\langle \mathbf{a} \rangle = \mathbf{c}$	0.50516	0 62059	1 17226				
C	-0.37310	-0.02038	1.1/220				
C	0.20394	-1.19391	0.00000				
C	0.040//	1.0/100	0.00000				
C	-0.39310	0.80333	0.00000				
U	1.438/0	-0.23903	0.00000				

Η	2.05857	-0.35476	-0.90465
Η	2.05857	-0.35476	0.90465
С	-0.59516	-0.62058	-1.17226
С	-0.59516	0.80553	-0.83881
Н	0.40769	-2.27365	0.00000
Н	1.11870	2.05476	0.00000
Н	-1.14205	1.59045	-1.36238
Н	-1.38797	-1.14670	-1.70816
Н	-1.14205	1.59045	1.36238
Η	-1.38797	-1.14670	1.70816
Р.(~І.Н₂		
5./	$S_1 = 11_2$ S ₁ conical inter	section	
Svi	mmetry: C_2		
C.	1 06889492	0 75413680	-0 56054614
c	-0.00556196	1 14397133	0.45025521
\hat{c}	0.00544143	-1 14393524	0.45012659
C C	0.87615472	0.67/11000	0.43001586
c c	0.07013472	0.00001761	1 47016716
с u	0.00004050	-0.00001701	2 08075753
п п	-0.88870773	-0.02023130	2.08975755
п	0.00091077	0.02010008	2.06970333
C	-0.87384205	0.07409749	-0.03014202
	-1.07006106	-0.75425840	-0.559/5981
H	-0.05616494	2.16/62644	0.77915443
H	0.05626071	-2.16/55983	0.77910925
Н	-1.39529512	-1.36575387	-1.37483629
Н	-1.28602153	1.32854706	-1.37458753
Н	1.28641028	-1.32850408	-1.37448519
Η	1.39559397	1.36583610	-1.37486309
P-I	\mathbf{H}_2		
S_{1}	minimum		
Syı	mmetry: C_{2v}		
Ċ	-1.056740	-0.692114	0.000292
С	-0.011887	-1.135106	-0.980055
С	0.012027	1.135085	-0.980200
С	-1.041929	0.714330	0.000199
С	-0.000088	-0.000076	-2.020195
С	1.042367	-0.714229	-0.000029
С	1.057178	0.692216	-0.000116
Н	0.888902	-0.009482	-2.639697
Н	-0.889267	0.009253	-2.639428
Н	-0.022754	-2.161178	-1.310220
н	0.022793	2 161116	-1 310498
н	1 575086	1 333652	0.683064
н	1 546649	-1 366345	0.683233
н	-1 546005	1 366532	0.683531
н	-1 57//38	-1 333/65	0.683711
11 NI	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.555405	0.003/11
ha) 00	
υЧ	0.0 0.0	, 0.0	

bq	0.0	0.0	0.1	
bq	0.0	0.0	0.2	
bq	0.0	0.0	0.3	
bq	0.0	0.0	0.4	
bq	0.0	0.0	0.5	
bq	0.0	0.0	0.6	
bq	0.0	0.0	0.7	
bq	0.0	0.0	0.8	
bq	0.0	0.0	0.9	
bq	0.0	0.0	1.0	
bq	0.0	0.0	1.1	
bq	0.0	0.0	1.2	
bq	0.0	0.0	1.3	
bq	0.0	0.0	1.4	
bq	0.0	0.0	1.5	
bq	0.0	0.0	1.6	
bq	0.0	0.0	1.7	
bq	0.0	0.0	1.8	
bq	0.0	0.0	1.9	
bq	0.0	0.0	2.0	
bq	0.0	0.0	2.1	
ba	0.0	0.0	2.2	
bq	0.0	0.0	2.3	
bq	0.0	0.0	2.4	
bq	0.0	0.0	2.5	
bq	0.0	0.0	2.6	
bq	0.0	0.0	2.7	
bq	0.0	0.0	2.8	
bq	0.0	0.0	2.9	
bq	0.0	0.0	3.0	
bq	0.0	0.0	3.1	
bq	0.0	0.0	3.2	
bq	0.0	0.0	3.3	
bq	0.0	0.0	3.4	
bq	0.0	0.0	3.5	
bq	0.0	0.0	3.6	
bq	0.0	0.0	3.7	
bq	0.0	0.0	3.8	
bq	0.0	0.0	3.9	
bq	0.0	0.0	4.0	
bq	0.0	0.0	4.1	
bq	0.0	0.0	4.2	
bq	0.0	0.0	4.3	
bq	0.0	0.0	4.4	
bq	0.0	0.0	4.5	
bq	0.0	0.0	4.6	
bq	0.0	0.0	4.7	
bq	0.0	0.0	4.8	
bq	0.0	0.0	4.9	
bq	0.0	0.0	5.0	
P-Me NBD i	2 isomer			
Symm	hetry: C_{2x}	,		
Electr	onic ener	gy: -	-349.67901	9193
С	1.2322	0	0.67379	-1.12689
С	0.0000	0	1.12472	-0.31921
С	-0.0000	0	-1.12472	-0.31921
С	1.2322	0	-0.67379	-1.12689
С	-0.0000	0	-0.00000	0.80633

-0.00000

-0.00000

0.80633

C	-1.23220	0.67379	-1.12689
С	-1.23220	-0.67379	-1.12689
Н	-0.00000	2.17053	0.02429
Н	-0.00000	-2.17053	0.02429
н	_1 92978	-1 3/9/1	-1 62505
	1.02078	-1.34941	-1.02505
н	-1.92978	1.54941	-1.62505
Н	1.92978	-1.34941	-1.62505
Н	1.92978	1.34941	-1.62505
С	-1.23501	0.00000	1.72090
Η	-1.21741	-0.88800	2.37678
Н	-1.21741	0.88800	2.37678
н	-2 18230	0.00000	1 16579
C	1 22501	0.00000	1.72000
U U	1.25501	-0.00000	1.72090
Н	2.18230	-0.00000	1.16579
Н	1.21741	0.88800	2.37678
Η	1.21741	-0.88800	2.37678
P-M	e2		
QC is	somer		
Svm	metry: C2.		
Floot	ronio onorgu	210 659109	750
C		-349.030490	0 77660
C	-1.32/63	-0.76202	-0.77660
C	-0.06531	-0.00004	-1.14998
С	-0.06530	0.00011	1.14997
С	-1.32755	-0.76198	0.77667
С	0.94344	0.00007	-0.00004
С	-1.32786	0.76195	-0.77655
С	-1.32782	0.76201	0.77656
Ĥ	0 27179	0.00000	-2 19104
н	0.27219	0.00017	2 19092
	1.95276	1 45 675	2.19092
н	-1.855/0	1.45675	1.43330
Н	-1.85369	1.45669	-1.43344
Н	-1.85381	-1.45689	1.43302
Н	-1.85323	-1.45730	-1.43310
С	1.80721	1.27035	-0.00009
Н	2.45774	1.30754	0.89099
н	2.45769	1.30749	-0.89120
н	1 17101	2 17104	-0.00010
C	1.17101	1 27034	0.00010
	1.00714	-1.27034	0.00009
п	1.17084	-2.17090	0.00010
Н	2.45770	-1.30/69	-0.89097
Н	2.45760	-1.30748	0.89122
P-M	e ₂		
Trans	sition state		
Svm	metry: C_s		
Elect	ronic energy.	-349 600835	308
$\langle S^2 \rangle$	-1.0086	0 1910000000	200
C	1 07165	1 16970	0.74200
C	-1.07103	1.10670	0.74200
C	-0.17292	0.00000	1.14841
С	-0.18004	0.00000	-1.15391
С	-1.33660	0.84380	-0.65898
С	0.88239	0.00000	-0.02919
С	-1.07165	-1.16870	0.74200
С	-1.33660	-0.84380	-0.65898
Н	0.23970	0.00000	2.16597
Н	0.10663	0.00000	-2.21030
Н	-2.02391	-1.36745	-1 32460
н	-1 74457	-1 71043	1 40023
ц	2 02201	1 36745	1 37/60
11	-2.02371	1.50745	-1.54400

Η	-1.74457	1.71043	1.40923
С	1.75259	-1.26062	-0.04948
Η	2.38989	-1.27909	-0.95072
Η	2.41768	-1.28842	0.83134
Η	1.13341	-2.17243	-0.04028
С	1.75259	1.26062	-0.04948
Η	1.13341	2.17243	-0.04028
Η	2.41768	1.28842	0.83134
Η	2.38989	1.27909	-0.95072

P-Me₂

 S_0/S_1 conical intersection

S	mmetry.	C
N 1	y minieti y .	<u> </u>

Syl	millen y. C ₂		
Ċ	-0.01183237	1.10531354	-1.24347162
С	-0.91093589	0.68509201	-0.16437569
С	0.91093848	-0.68508620	-0.16437950
С	1.24432598	0.40330076	-1.17969046
С	0.00000097	0.0000086	0.87945381
С	-1.24430410	-0.40327570	-1.17970894
С	0.01182720	-1.10532071	-1.24346513
Η	-1.69954941	1.34164671	0.16447276
Η	1.69954883	-1.34164415	0.16447116
Η	0.29012179	-1.83128691	-1.98297227
Η	-1.92832695	-0.29684722	-1.99510750
Η	1.92831468	0.29683670	-1.99511441
Η	-0.29013106	1.83127729	-1.98297934
С	0.74819891	1.00775180	1.75271633
Η	1.44981907	0.50005609	2.40900932
Η	1.30464897	1.71728159	1.15399436
Η	0.05260393	1.55735406	2.38109231
С	-0.74819800	-1.00775245	1.75271246
Η	-1.44982182	-0.50005934	2.40900420
Η	-1.30464518	-1.71728496	1.15399009
Η	-0.05260405	-1.55735377	2.38109004
P-i	Pr ₂		
NB	BD isomer		
Svi	mmetry: C_2		

,	J 2		
Elect	tronic energy:	-506.716639	767
С	1.22600	-0.66761	1.96983
С	-0.00000	-1.12313	1.15151
С	0.00000	1.12313	1.15151
С	1.22789	0.67920	1.96752
С	-0.00000	0.00000	0.00639
С	-1.22789	-0.67920	1.96752
С	-1.22600	0.66761	1.96983
Η	0.01141	-2.17315	0.82500
Η	-0.01141	2.17315	0.82500
Η	-1.91827	1.34387	2.47499
Η	-1.92199	-1.35657	2.46838
Η	1.92199	1.35657	2.46838
Η	1.91827	-1.34387	2.47499
С	-1.32228	0.04633	-0.83842
Η	-2.10065	0.37496	-0.13265
С	1.32228	-0.04633	-0.83842
Η	2.10065	-0.37496	-0.13265
С	-1.81510	-1.32007	-1.35160
Η	-2.81348	-1.20026	-1.80715
Η	-1.15897	-1.76371	-2.11458
Η	-1.91670	-2.04524	-0.52738

С	-1.34152	1.09157	-1.96828
Η	-0.69593	0.82146	-2.81929
Η	-2.36999	1.18216	-2.35872
Η	-1.03650	2.08915	-1.61112
С	1.81510	1.32007	-1.35160
Η	2.81348	1.20026	-1.80715
Η	1.15897	1.76371	-2.11458
Η	1.91670	2.04524	-0.52738
С	1.34152	-1.09157	-1.96828
Η	0.69593	-0.82146	-2.81929
Η	2.36999	-1.18216	-2.35872
Η	1.03650	-2.08915	-1.61112

P-iPr₂

QC isomer

Symmetry: C_2

Elec	tronic energy:	-506.701018	928
С	-0.76316	-0.77245	-2.18820
С	0.00000	-1.14784	-0.92819
С	0.00000	1.14784	-0.92819
С	-0.76161	0.77900	-2.18994
С	-0.00000	0.00000	0.09505
С	0.76161	-0.77900	-2.18994
С	0.76316	0.77245	-2.18820
Н	-0.01454	-2.19368	-0.61132
Η	0.01454	2.19368	-0.61132
Н	1.46054	1.42999	-2.70967
Н	1.45421	-1.43643	-2.71809
Η	-1.45421	1.43643	-2.71809
Н	-1.46054	-1.42999	-2.70967
С	1.35287	0.01597	0.88099
Н	2.09984	0.22784	0.08999
С	-1.35287	-0.01597	0.88099
Η	-2.09984	-0.22784	0.08999
С	1.77937	-1.32322	1.51175
Н	2.81124	-1.23764	1.89459
Η	1.14099	-1.61510	2.35991
Н	1.76988	-2.14481	0.77799
С	1.47765	1.14248	1.92070
Η	0.86788	0.93844	2.81689
Η	2.52557	1.23232	2.25517
Н	1.17060	2.12104	1.51679
С	-1.77937	1.32322	1.51175
Η	-2.81124	1.23764	1.89459
Н	-1.14099	1.61510	2.35991
Н	-1.76988	2.14481	0.77799
С	-1.47765	-1.14248	1.92070
Н	-0.86788	-0.93844	2.81689
Н	-2.52557	-1.23232	2.25517
Н	-1.17060	-2.12104	1.51679

P-iPr2

Transition state Symmetry: *C*₁ Electronic energy: -506.642346250 $<S^{2}> = 1.0067$ С 2.16897 -0.97503 0.47407 С 1.00799 -0.24648 1.11616 С 1.04317 0.25249 -1.12675 С 1.93567 -0.97905 -0.96506

С	-0.05249	0.00083	0.00477
С	2.16743	0.68630	0.83735
С	1.93044	1.30339	-0.46239
Н	0.72330	-0.46231	2.14917
Н	0.66812	0.46551	-2.13488
Η	2.60513	1.98520	-0.98299
Η	2.84030	1.04933	1.61518
Н	2.62171	-1.36142	-1.72304
Н	2.84493	-1.63141	1.02359
С	-0.84937	1.30447	0.32379
Н	-0.07701	1.99896	0.70743
С	-0.84731	-1.30691	-0.30130
Η	-0.06984	-1.98732	-0.70650
С	-1.90005	1.15471	1.43723
Н	-2.24277	2.15173	1.76349
Η	-2.79048	0.60423	1.08962
Н	-1.50201	0.63306	2.32316
С	-1.47153	2.02028	-0.89040
Н	-2.30897	1.45869	-1.33101
Н	-1.86578	3.00155	-0.57387
Н	-0.72915	2.20941	-1.68238
С	-1.91656	-1.17027	-1.39781
Н	-2.25310	-2.17127	-1.71794
Н	-2.80727	-0.62908	-1.03647
Н	-1.53738	-0.64497	-2.28959
С	-1.43871	-2.03512	0.92044
Н	-2.27934	-1.48989	1.37681
Н	-1.82265	-3.02163	0.60711
Н	-0.68359	-2.21592	1.70256

P-iPr₂

 S_0/S_1 conical intersection

Symmetry: C_2				
С	0.64744874	0.89389223	2.07908967	
С	1.13743817	0.02666645	1.00037173	
С	-1.13745592	-0.02672859	1.00035106	
С	-0.78042874	1.05018721	2.01605617	
С	-0.00000880	-0.00001289	-0.06309628	
С	0.78045499	-1.05045367	2.01590480	
С	-0.64744833	-0.89383355	2.07914159	
Η	2.16397545	0.11324602	0.69021939	
Η	-2.16400410	-0.11327697	0.69023038	
Η	-1.29714207	-1.32192020	2.81807566	
Η	1.40202159	-1.36987827	2.82564030	
Η	-1.40203962	1.36998825	2.82559781	
Η	1.29712653	1.32200009	2.81802782	
С	0.00506479	1.34465826	-0.85700731	
Η	0.24694462	2.09699225	-0.11567700	
С	-0.00508518	-1.34466762	-0.85704185	
Η	-0.24700218	-2.09700673	-0.11573503	
С	1.35108941	-1.78338219	-1.43027183	
Η	1.26136322	-2.79092475	-1.82691547	
Η	1.69792373	-1.15177326	-2.23779952	
Η	2.11617457	-1.81179422	-0.66381349	
С	-1.08671210	-1.45578685	-1.94012626	
Η	-0.86503395	-0.85031411	-2.81141548	
Η	-1.15524605	-2.48642769	-2.27631123	
Η	-2.06755496	-1.16985589	-1.57538682	
С	1.08673662	1.45583157	-1.94004382	
Η	0.86511700	0.85035407	-2.81134395	

Н	1.15524596	2.48647662	-2.27622081
Н	2.06757247	1.16993410	-1.57526209
С	-1 35108715	1 78336814	-1 43029990
Н	-1.26138449	2.79096639	-1.82680753
Н	-1 69780579	1 15184073	-2.23794071
н	-2 11626041	1 81163406	-0.66392197
11	2.11020011	1.01105100	0.00372177
P-t	Bu ₂		
NB	D isomer		
Syı	mmetry: C_1		
Ele	ectronic energy:	-585.2010670	93
С	-1.21958	2.06435	-0.63211
С	-0.02883	1.21572	-1.12179
С	0.02783	1.21575	1.12183
С	-1.20048	2.04564	0.71180
С	-0.00007	0.06623	0.00006
С	1.19893	2.04645	-0.71180
С	1.21800	2.06522	0.63211
H	-0.07199	0.89207	-2.17177
Н	0.07122	0.89223	2.17184
Н	1.91081	2.59039	1.29184
Н	1.86430	2.55961	-1.40866
Н	-1.86623	2.55831	1.40864
Н	-1.91281	2.58904	-1.29180
C	1.34890	-0.85090	-0.01450
C	-1.34822	-0.85189	0.01452
С	1.68893	-1.25530	-1.47394
Η	2.53405	-1.96596	-1.47388
Н	0.86430	-1.71904	-2.02761
Н	2.01146	-0.36533	-2.04037
С	1.26494	-2.10558	0.91192
Н	0.39649	-2.75664	0.78389
Н	2.15947	-2.72513	0.73104
Н	1.29883	-1.79865	1.97164
С	-1.68734	-1.25769	1.47382
Η	-2.53170	-1.96926	1.47349
Н	-0.86210	-1.72082	2.02702
Н	-2.01075	-0.36839	2.04082
С	-1.26351	-2.10559	-0.91319
Н	-0.39453	-2.75616	-0.78617
Н	-2.15752	-2.72601	-0.73277
Н	-1.29796	-1.79749	-1.97256
С	-2.68041	-0.21959	-0.50648
Η	-3.10396	0.53955	0.15966

Η	-2.57601	0.22363	-1.50990
Н	-3.41926	-1.03737	-0.58957
С	2.68024	-0.21784	0.50780
Н	3.10370	0.54199	-0.15760
Н	2.57472	0.22465	1.51145
Н	3.41968	-1.03507	0.59102

P-tBu₂

QC isomer Symmetry: C₂ Electronic energy: -585.212822165 C C -0.65682 0.85914 -2.23085 -0.96199 0.16754 -1.13188 С -0.96199 1.13188 -0.16754 С 0.87851 0.64104 -2.23115 С -0.00000 -0.00000 0.06730

С	-0.87851	-0.64104	-2.23115
С	0.65682	-0.85914	-2.23085
Н	-2.16560	0.33597	-0.64938
Н	2.16560	-0.33597	-0.64938
Н	1.20905	-1.64927	-2.74225
Н	-1.62907	-1.23738	-2.75327
Н	1.62907	1.23738	-2.75327
Н	-1.20905	1.64927	-2.74225
С	-0.21690	-1.35319	0.91308
C	0.21690	1.35319	0.91308
С	-1.66189	-1.48273	1.45828
Н	-1.75223	-2.42976	2.01869
Н	-1.95501	-0.67284	2.13830
Н	-2.39374	-1.52224	0.63490
С	0.77298	-1.51328	2.08934
Н	0.63993	-0.76311	2.88153
Н	0.62121	-2.50379	2.55316
Н	1.81977	-1.47166	1.74465
С	1.66189	1.48273	1.45828
Ĥ	1.75223	2.42976	2.01869
Н	1.95501	0.67284	2.13830
Н	2.39374	1.52224	0.63490
С	-0.77298	1.51328	2.08934
Н	-0.63993	0.76311	2.88153
Н	-0.62121	2.50379	2.55316
Н	-1.81977	1.47166	1.74465
С	-0.00000	2.61806	0.04003
Н	0.67638	2.65331	-0.82681
Н	-1.03601	2.70415	-0.32117
Н	0.21122	3.50713	0.65926
С	-0.00000	-2.61806	0.04003
Н	-0.67638	-2.65331	-0.82681
Н	1.03601	-2.70415	-0.32117
Н	-0.21122	-3.50713	0.65926
P-tBu	2		
Transi	tion state		
Symm	tetry: C_1		
Electr	onic energy:	-585.137652	984
$\langle S^2 \rangle =$	= 1.0000		
С	-2.03984	1.15811	0.72821
С	-1.10887	0.01845	1.14377
С	-1.06941	0.02975	-1.14264
С	-2.21758	0.90451	-0.67964
С	0.00405	0.01645	-0.00880
C	-2.00975	-1.14542	0.71756
C	-2.21019	-0.85661	-0.68602
H	-0.74739	0.02568	2.17930
Н	-0.78096	0.02775	-2.19821
Н	-2.87955	-1.37148	-1.37582
Η	-2.71660	-1.65541	1.37510

Η

Η

С

С

С

Η

Η

Η

С

-2.89814

-2.74073

0.85937

0.90234

1.20012

1.82101

1.75479

0.28453

2.17825

1.41579

1.66700

-1.36651

1.35217

-1.79077

-2.70330

-1.02704

-2.03549

-1.33283

-1.36168

1.39104

0.00045

-0.01393

1.45203

1.42910

2.01418

2.01416

-0.81854

Η

С

Η

Η

Η

С

Η

-2.36265074

0.04910832

-0.61826940

1.07239622

-0.08715937

-0.04910988

1.56510631

2.67270979

2.83987567

2.73699671

3.49155408

-2.67270943

0.61826841 -2.83987540

Η	2.89684	-0.56496	-0.50956
Η	2.68068	-2.30762	-0.69547
Η	1.98022	-1.21105	-1.89642
С	1.52526	1.62004	-1.41204
Η	2.14873	2.52949	-1.35804
Η	2.15707	0.81617	-1.80197
Η	0.73206	1.81791	-2.15245
С	2.00368	1.32691	1.07669
Η	2.74439	0.52476	0.96794
Η	2.55597	2.28209	1.05069
Η	1.55453	1.23949	2.08075
С	0.14123	2.67744	0.28616
Η	-0.63756	2.90572	-0.45469
Η	-0.31485	2.69624	1.28785
Η	0.88289	3.49734	0.24827
С	0.11887	-2.58582	-0.62391
Η	-0.75846	-2.89695	-0.03977
Η	-0.20766	-2.39131	-1.65825
Η	0.82295	-3.43602	-0.65213
P-t	Bu ₂		
S ₀ /	S ₁ conical inter	section	
Sy	mmetry: C_2		
Ċ	0.45086405	1.01611520	2.13264158
С	1.10713783	0.24304450	1.05769156
С	-1.10713706	-0.24304444	1.05769208
С	-0.96932001	0.86979701	2.08351796
С	0.0000008	0.00000009	-0.02041081
С	0.96932060	-0.86979602	2.08351871
С	-0.45086268	-1.01611516	2.13264209
Η	2.09812941	0.53083084	0.75147737
Η	-2.09812893	-0.53083118	0.75147814
Η	-1.00815693	-1.57341761	2.86072174
Η	1.64692431	-1.06316364	2.88803330
Η	-1.64692382	1.06316315	2.88803258
Η	1.00815846	1.57341780	2.86072045
С	-0.23791083	1.34432716	-0.88841351
С	0.23791072	-1.34432686	-0.88841382
С	1.70847221	-1.46955430	-1.34261212
Η	1.82963936	-2.36922572	-1.93902200
Η	2.05832148	-0.64218887	-1.93988907
Η	2.36265055	-1.56510878	-0.48363238
С	-0.70254168	-1.46960772	-2.11301333
Η	-0.62735573	-0.68186997	-2.84149955
Η	-0.47306891	-2.39537851	-2.63032877
Η	-1.73971405	-1.53400568	-1.80060975
С	0.70254214	1.46960911	-2.11301243
Η	0.62735687	0.68187096	-2.84149784
Η	0.47306905	2.39537987	-2.63032788
Η	1.73971448	1.53400704	-1.80060821
С	-1.70847211	1.46955216	-1.34261204
Η	-1.82964074	2.36922350	-1.93902253
Η	-2.05832118	0.64218659	-1.93988885

-0.48363252

-0.13151592

0.69693371

0.22230117

-0.83121761

-0.13151616

0.69693313

Η	-1.07239738	-2.73699404	0.22230211
Η	0.08715689	-3.49155422	-0.83121759
пл	П.		
NB	SD isomer		
Svi	mmetry: C		
Fle	ectronic energy:	-534 0016739	29
C	0.24663	0.93017	0.68555
c	0.87316	-0/11733	1 12222
c	0.87316	-0.41733	-1 12222
c	0.24663	0.93017	0.68555
C	1 0/1/8	0.53017	0.00000
с u	2 42709	-0.54649	-0.00000
п ц	2.43790	-1.33093	-0.00000
п	2.06329	0.20757	0.00000
C	-0.11185	-1.32490	0.07741
с u	-0.11165	-1.32490	-0.07741
п	1.20204	-0.43033	2.10933
П	1.20204	-0.45055	-2.10955
	-0.93851	-2.29502	1.05240
н	-1.38083	-1.01918	2.24005
H	-1.58481	-3.03132	1.14930
H	-0.30529	-2.83615	2.37886
C	-0.27679	1.89652	1.57064
N	-0.69515	2.66879	2.35807
C	-0.27679	1.89652	-1.57064
N	-0.69515	2.66879	-2.35807
C	-0.93851	-2.29562	-1.65246
H	-1.58481	-3.03132	-1.14930
Н	-1.58683	-1.61918	-2.24005
Н	-0.30529	-2.83615	-2.37886
DA	-H 2		
QC	lisomer		
Syı	mmetry: $C_{\rm s}$		
Ele	ctronic energy:	-533.9722216	42
С	-0.49085	0.23894	0.77792
С	0.70557	1.13293	1.15321
С	0.70557	1.13293	-1.15321
С	-0.49085	0.23894	-0.77792
С	1.02793	2.06497	-0.00000
Η	2.09119	2.36240	-0.00000
Η	0.40035	2.97163	-0.00000
С	0.95292	-0.31235	0.78087
С	0.95292	-0.31235	-0.78087
Η	0.79432	1.43738	2.19928
Η	0.79432	1.43738	-2.19928
С	1.53305	-1.37976	1.65760
Η	1.21359	-1.23838	2.70245
Η	1.20365	-2.38272	1.33957
Н	2.63612	-1.35485	1.63121
С	-1.56288	-0.09836	1.64492
N	-2.42916	-0.40168	2.38323
C	-1.56288	-0.09836	-1.64492
N	-2.42916	-0.40168	-2.38323
C	1.53305	-1.37976	-1.65760
Ĥ	2.63612	-1.35485	-1.63121
Н	1.20365	-2.38272	-1.33957
Н	1.21359	-1.23838	-2.70245

 $\mathbf{DA}-\mathbf{H}_2$

Trar	sition state		
Sym	metry: C_1		
Elec	tronic energy:	-533.927876	020
$< S^{2}$	> = 0.9897		
С	0.19962	0.80643	0.31045
С	-0.92043	0.52592	1.33805
С	0.08283	-1.47568	0.78837
С	1.06596	-0.40349	0.30895
С	-0.54039	-0.78220	2.03078
Н	-1.42652	-1.32408	2.40095
Н	0.18463	-0.63954	2.84807
С	-1.28307	0.19709	-0.08866
С	-0.97949	-1.24689	-0.28123
Η	-1.37908	1.37142	1.85641
Η	0.48454	-2.48836	0.90720
С	-2.22291	1.00077	-0.93985
Η	-2.18797	2.06909	-0.67651
Η	-1.97483	0.90886	-2.00969
Η	-3.25874	0.64745	-0.79445
С	0.57557	2.11137	-0.10063
Ν	0.83785	3.20348	-0.45876
С	2.31749	-0.57987	-0.24692
Ν	3.40203	-0.76803	-0.70194
С	-1.09096	-1.99042	-1.56280
Н	-2.02623	-1.74216	-2.09130
Н	-0.25593	-1.74863	-2.25601
Н	-1.06436	-3.08033	-1.39883

$DA-H_2$

S₀/S₁ conical intersection

Sy	mmetry: C_1		
Ċ	0.62492872	0.88527038	0.76734851
С	1.14442872	-0.51754350	1.13580009
С	1.17692394	-0.50882481	-1.13681100
С	0.30001665	0.56043201	-0.65424477
С	2.14158762	-0.80526884	0.00358396
Η	2.49438244	-1.83067791	-0.02315405
Η	2.97945332	-0.12269343	0.03454738
С	-0.09234934	-1.22985356	0.68338595
С	-0.18056939	-1.09843461	-0.71795555
Η	1.45282975	-0.67823803	2.15574931
Η	1.45253621	-0.57577231	-2.17319412
С	-1.12174423	-1.75963548	1.60422499
Η	-1.51698637	-0.91765910	2.17107496
Η	-1.93213265	-2.25697384	1.09166428
Η	-0.66157818	-2.43509826	2.31849844
С	-0.34679663	1.48565856	1.59496068
Ν	-1.10977032	1.96712580	2.30329440
С	-0.43657125	1.40446041	-1.55941438
Ν	-1.01927054	2.04857826	-2.29096681
С	-1.23971385	-1.63492667	-1.64123080
Η	-2.23568122	-1.48696858	-1.24018391
Η	-1.20008119	-1.12602103	-2.59655027
Н	-1.10013220	-2.69573646	-1.83042732

DA-H₂

	-112				
S_1	S_1 minimum				
Sy	mmetry: $C_{\rm s}$				
С	-1.081078957	0.704686999	-0.000032382		
С	0.023729515	1.128071310	-0.964957219		

С	0.023840495	-1.127307689	-0.964924554
С	-1.081000000	-0.704000000	0.000000000
С	0.002323874	0.000363995	-2.004722454
С	1.081010854	0.708059855	0.000000000
С	1.081062846	-0.707160144	0.000034881
С	1.859298841	1.639750779	0.863557752
С	-1.754927273	1.600882400	0.852303863
С	-1.754742791	-1.600233597	0.852382845
С	1.859396666	-1.638751218	0.863659033
Ν	-2.275532196	2.363808303	1.525925029
Ν	-2.275238288	-2.363177691	1.526067013
Н	0.877888045	0.000399335	-2.643937032
Н	-0.898653427	0.000313484	-2.603082047
Н	0.016194661	2.156430505	-1.286865373
Н	0.016402278	-2.155679492	-1.286791440
Н	1.219052421	2.436357523	1.228110437
Н	2.304816518	1.142695690	1.714563592
Н	2.655886564	2 105766228	0 285723841
н	2 304489811	-1 141706304	1 714894091
н	1 219304457	-2.435635487	1 227865324
н	2 656320784	-2 104388759	0 285981400
NIC	⁻ S scan:	2.10 1300757	0.205901100
ba		0.0	
ba	0.0 0.0	0.1	
ba	0.0 0.0	0.2	
bq	0.0 0.0	0.3	
bq	0.0 0.0	0.4	
bq	0.0 0.0	0.5	
bq	0.0 0.0	0.6	
bq	0.0 0.0	0.7	
bq	0.0 0.0	0.8	
bq	0.0 0.0	0.9	
bq	0.0 0.0	1.0	
bq	0.0 0.0	1.1	
bq	0.0 0.0	1.2	
bq	0.0 0.0	1.3	
bq	0.0 0.0	1.4	
bq	0.0 0.0	1.5	
bq	0.0 0.0	1.6	
bq	0.0 0.0	1.7	
bq	0.0 0.0	1.8	
bq	0.0 0.0	1.9	
bq	0.0 0.0	2.0	
bq	0.0 0.0	2.1	
bq	0.0 0.0	2.2	
bq	0.0 0.0	2.3	
bq	0.0 0.0	2.4	
bq	0.0 0.0	2.5	
bq	0.0 0.0	2.6	
bq	0.0 0.0	2.7	
bq	0.0 0.0	2.8	
bq		2.9	
ba		5.U 3.1	
bq		5.1 2.2	
ba		3.2	
ba		3.5	
ha		3. 1 3.5	
ha		3.6	
ha		37	
υy	0.0 0.0	5.1	

bq	0.0	0.0	3.8
bq	0.0	0.0	3.9
bq	0.0	0.0	4.0
bq	0.0	0.0	4.1
bq	0.0	0.0	4.2
bq	0.0	0.0	4.3
bq	0.0	0.0	4.4
bq	0.0	0.0	4.5
bq	0.0	0.0	4.6
bq	0.0	0.0	4.7
bq	0.0	0.0	4.8
bq	0.0	0.0	4.9
bq	0.0	0.0	5.0

DA-Me₂

NBD isomer Symmetry: C_s Electronic energy: -612.530692568 С -0.04588 1.04757 0.68578 С 0.34922 -0.37876 1.12019 С -0.37876 0.34922 -1.12019 С 1.04757 -0.04588 -0.68578 С -0.70738 0.00000 1.41740 С -0.82074 -1.28377 0.67678 С -0.82074 -1.28377 -0.67678 Η 0.66534 -0.46910 2.16962 Н -0.46910 0.66534 -2.16962 С -1.74870 -1.92380 1.65423 Η -1.16290 2.27140 -2.26162 Н -2.51980 -2.52875 1.15230 Η -2.58052 -1.20089 2.35475 С 2.09798 -0.36802 1.57025 Ν -0.62293 2.93894 2.35749 С -0.36802 2.09798 -1.57025Ν -0.622932.93894 -2.35749С -1.74870 -1.92380 -1.65423 Η -2.51980 -2.52875 -1.15230 -2.26162 -1.16290 Η -2.27140 Η -1.20089 -2.58052 -2.35475 С 2.657370.19929 -0.00000 Η 3.27576 -0.01226 0.88908 Η 3.27576 -0.01226 -0.88908 Η 1.27195 2.41824 -0.00000 С 1.90151 -2.16384 0.00000 Η 2.53008 -2.34976 -0.88716 Η 2.53008 -2.34976 0.88716 Н 1.07670 -2.88969 0.00000

DA-Me₂

QC isomer

Symmetry: *C*_s Electronic energy: -612.504669968

С	-0.29129	-0.66798	0.77862
С	-0.19093	0.81923	1.14930
С	-0.19093	0.81923	-1.14930
С	-0.29129	-0.66798	-0.77862
С	-0.70192	1.68672	-0.00000
С	1.06763	0.07197	0.78112
С	1.06763	0.07197	-0.78112
Н	-0.36848	1.09245	2.19355

Η	-0.36848	1.09245	-2.19355	
С	2.25518	-0.18359	1.65793	
Η	1.94095	-0.32027	2.70498	
Η	2.79516	-1.09382	1.34866	
Η	2.96069	0.66447	1.62198	
С	-0.72844	-1.70333	1.64499	
Ν	-1.06096	-2.56014	2.38200	
С	-0.72844	-1.70333	-1.64499	
Ν	-1.06096	-2.56014	-2.38200	
С	2.25518	-0.18359	-1.65793	
Η	2.96069	0.66447	-1.62198	
Η	2.79516	-1.09382	-1.34866	
Н	1.94095	-0.32027	-2.70498	
С	-0.02080	3.06563	-0.00000	
Η	1.07742	2.96518	-0.00000	
Η	-0.31287	3.64660	-0.89057	
Η	-0.31287	3.64660	0.89057	
С	-2.23229	1.80563	-0.00000	
Η	-2.58281	2.35227	-0.89172	
Η	-2.70501	0.80989	-0.00000	
Η	-2.58281	2.35227	0.89172	

DA-Me₂ Transition state Symmetry: *C*₁

ctronic energy:	-612.460904	932
> = 0.9925		
-0.79672	0.21572	-0.61002
0.62419	0.53246	-1.11708
0.80045	-0.83156	0.72557
-0.66020	-0.95882	0.29232
1.52850	-0.62484	-0.65273
0.21359	1.32931	0.09327
0.70318	0.58275	1.28026
0.73967	1.00829	-2.09539
1.18635	-1.61948	1.38400
-0.14665	2.78641	0.07915
-0.60557	3.07679	-0.87842
-0.85911	3.03173	0.88334
0.75968	3.40062	0.22248
-1.97773	0.63594	-1.27407
-2.94122	1.03591	-1.82366
-1.64347	-1.77303	0.81805
-2.46076	-2.50533	1.28146
0.45802	0.94916	2.69897
0.57219	2.03410	2.85901
-0.57105	0.68230	3.02501
1.15236	0.42415	3.37590
1.43444	-1.85004	-1.56673
1.85724	-1.62522	-2.56025
2.00212	-2.69546	-1.14267
0.39031	-2.17545	-1.70468
2.98243	-0.17213	-0.47775
3.42553	0.09467	-1.45201
3.05339	0.70454	0.18735
3.59056	-0.98363	-0.04339
	$\begin{aligned} & \text{ctronic energy:} \\ &> = 0.9925 \\ &-0.79672 \\ &0.62419 \\ &0.80045 \\ &-0.66020 \\ &1.52850 \\ &0.21359 \\ &0.70318 \\ &0.73967 \\ &1.18635 \\ &-0.14665 \\ &-0.60557 \\ &-0.85911 \\ &0.75968 \\ &-1.97773 \\ &-2.94122 \\ &-1.64347 \\ &-2.46076 \\ &0.45802 \\ &0.57219 \\ &-0.57105 \\ &1.15236 \\ &1.43444 \\ &1.85724 \\ &2.00212 \\ &0.39031 \\ &2.98243 \\ &3.42553 \\ &3.05339 \\ &3.59056 \end{aligned}$	$\begin{aligned} \text{ctronic energy: -612.460904} \\ > &= 0.9925 \\ &-0.79672 & 0.21572 \\ &0.62419 & 0.53246 \\ &0.80045 & -0.83156 \\ &-0.66020 & -0.95882 \\ &1.52850 & -0.62484 \\ &0.21359 & 1.32931 \\ &0.70318 & 0.58275 \\ &0.73967 & 1.00829 \\ &1.18635 & -1.61948 \\ &-0.14665 & 2.78641 \\ &-0.60557 & 3.07679 \\ &-0.85911 & 3.03173 \\ &0.75968 & 3.40062 \\ &-1.97773 & 0.63594 \\ &-2.94122 & 1.03591 \\ &-1.64347 & -1.77303 \\ &-2.46076 & -2.50533 \\ &0.45802 & 0.94916 \\ &0.57219 & 2.03410 \\ &-0.57105 & 0.68230 \\ &1.15236 & 0.42415 \\ &1.43444 & -1.85004 \\ &1.85724 & -1.62522 \\ &2.00212 & -2.69546 \\ &0.39031 & -2.17545 \\ &2.98243 & -0.17213 \\ &3.42553 & 0.09467 \\ &3.05339 & 0.70454 \\ &3.59056 & -0.98363 \end{aligned}$

DA-Me₂

 S_0/S_1 conical intersection Symmetry: C_1

С	-0.20144565	0.67736021	0.65807205
С	0.64579928	-0.42008904	1.13277162
С	0.61603351	-0.41056416	-1.13198402
С	0.11612548	0.99757963	-0.76199022
С	1.62448780	-0.75147294	-0.00208632
С	-0.72699999	-0.96922557	0.71366743
С	-0.63727267	-1.09898556	-0.68653938
Η	0.91764968	-0.49802882	2.17073279
Η	0.91982407	-0.57458636	-2.15405838
С	-1.79836992	-1.48572893	1.63411924
Η	-1.76476321	-0.96402532	2.58284903
Η	-2.78931841	-1.33628227	1.22138236
Η	-1.66868681	-2.54492273	1.83935572
С	-0.90832170	1.53765771	1.57273990
Ν	-1.46630740	2.19488970	2.31187590
С	-0.83989761	1.62308610	-1.58638565
Ν	-1.59032039	2.12656739	-2.29328817
С	-1.66990832	-1.61278626	-1.61303226
Η	-2.50034667	-2.08081339	-1.10495437
Η	-2.03405957	-0.76909188	-2.19740926
Η	-1.21859461	-2.31121870	-2.31092780
С	2.86273095	0.14402114	0.00436964
Η	2.59476251	1.19014530	-0.01233253
Η	3.46340232	-0.05318086	0.88786373
Η	3.47996041	-0.06208064	-0.86492556
С	2.04270394	-2.22479542	-0.00167624
Η	2.65468834	-2.45145758	0.86550382
Η	1.19198210	-2.89985928	0.01202121
Η	2.63052153	-2.45005348	-0.88573629
DA	-Me ₂		
S_1	minimum		
Syı	mmetry: $C_{\rm s}$		
Ċ	-0.160484	0.838648	0.698014

С	-0.160484	0.838648	0.698014
С	0.514441	-0.460518	1.125135
С	0.522997	-0.468022	-1.123543
С	-0.155128	0.833947	-0.710249
С	1.556520	-0.707939	0.005558
С	-0.685490	-1.240569	0.705716
С	-0.680112	-1.245283	-0.708071
Η	0.821386	-0.527944	2.157088
Н	0.837785	-0.542324	-2.152658
С	-1.717567	-1.781835	1.634745
Η	-1.876830	-1.097100	2.460771
Η	-2.666802	-1.952853	1.144652
Η	-1.379753	-2.726311	2.058800
С	-0.811114	1.713774	1.590054
Ν	-1.328462	2.395355	2.347929
С	-0.798925	1.703079	-1.613040
Ν	-1.310472	2.379564	-2.379372
С	-1.705111	-1.792755	-1.641294
Η	-2.658038	-1.960561	-1.157293
Η	-1.858098	-1.113525	-2.473031
Η	-1.364091	-2.740009	-2.056495
С	2.710958	0.292696	0.006610
Н	2.366838	1.317452	0.001876
Н	3.332007	0.148231	0.885457
Н	3.338680	0.142377	-0.866495
С	2.116987	-2.132630	0.012443
Η	2.734210	-2.293065	0.890907

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.81462
DA.iPr₂ C 1.62993 MBD isomer H 1.67478 MBD isomer H 2.65526 Symmetry: C1 H 1.01775 Electronic energy: -769.569744611 C 2.20187 C 1.47172 -0.26341 0.76636 N 2.91155 C 0.14539 0.46449 1.07684 C 2.23208 C 0.21080 0.18039 -1.14098 N 2.95338 C 1.50916 -0.44121 -0.59231 C 1.646711 C 0.31527 1.86947 0.46163 H 2.67117 C 0.3305 -0.10293 -2.17423 H -1.46384 C 0.46931 3.09737 1.29508 C -1.49881 H 1.35082 3.01863 1.95825 H -0.57320 H 0.4074 3.24977 1.95178 H -3.50736 C 2.43583 -0.61679 1.73300 H -2.60788	-0.63414
DA-PPr₂ H 1.67478 NBD isomer H 2.6526 Symmetry: C ₁ H 1.01775 Electronic energy: -769.569744611 C 2.20187 C 1.47172 -0.26341 0.76636 N 2.21155 C 0.14339 0.46449 1.07684 C 2.23208 C 0.21080 0.18039 -0.14098 N 2.95338 C -1.50916 -0.44121 -0.59231 C 1.64671 C 0.31527 1.86947 0.46163 H 2.67781 H -0.14674 0.43005 2.13555 C -2.07801 H -0.13053 -0.10293 -2.17423 H -1.46384 C 0.46931 3.09737 1.29508 C -1.49881 H 1.35082 3.01863 1.95825 H -0.57320 H 0.59028 4.00012 0.67633 C -2.60788 N 3.2040 -0.89258 2.58838 H -2.19178 C 2.51809	2.65915
NBD isomer H 2.6526 Symmetry: C1 Electronic energy: -769.569744611 C 2.20187 C 1.47172 -0.26341 0.76636 N 2.91155 C 0.14539 0.46449 1.07684 C 2.23208 C 0.21080 0.18039 -1.14098 N 2.95338 C 1.50916 -0.44121 -0.59231 C 1.64671 C 0.31527 1.86947 0.46163 H 2.67117 C 0.33545 1.69648 -0.87976 H 1.69534 H -0.30305 -0.10293 -2.17423 H -1.46384 C 0.46931 3.09737 1.29508 C -1.49881 H 1.35082 3.01863 1.95825 H -0.5732 H 0.40674 3.24977 1.95178 H -3.50736 C 2.43583 -0.61679 1.73300 H -2.60788 N 3.20040 -0.	2.68247
Symmetry: C_1 H 1.01775 Electronic energy: -769.569744611 C 2.20187 C 1.4172 -0.26341 0.76636 N 2.91155 C 0.14539 0.46449 1.07684 C 2.23208 C 0.21080 0.18039 -1.14098 N 2.95338 C 0.50916 -0.44121 -0.59231 C 1.64671 C 0.31527 1.86947 0.46163 H 2.67117 C 0.35845 1.69648 -0.87976 H 1.69534 H -0.14674 0.43005 2.13555 C -2.07801 H -0.03305 -0.10293 -2.17423 H -1.46881 H 1.35082 3.01863 1.95825 H -0.57320 H -0.40674 3.24977 1.95178 H -3.50736 C 2.43583 -0.61679 1.73300 H -2.60788 N 3.2040 -0.89258 2	2,79981
$\begin{array}{cccccc} 1.47172 & -0.26341 & 0.76636 & N & 2.91155 \\ \hline C & 0.14539 & 0.46449 & 1.07684 & C & 2.23208 \\ \hline C & 0.21080 & 0.18039 & -1.14098 & N & 2.95338 \\ \hline C & 0.21080 & 0.18039 & -1.14098 & N & 2.95338 \\ \hline C & 0.21080 & 0.18039 & -1.14098 & N & 2.95338 \\ \hline C & 0.31527 & 1.86947 & 0.46163 & H & 2.67117 \\ \hline C & 0.31527 & 1.86947 & 0.46163 & H & 2.67117 \\ \hline C & 0.31527 & 1.86947 & 0.46163 & H & 2.67117 \\ \hline C & 0.31527 & 1.86947 & 0.46163 & H & 2.67117 \\ \hline C & 0.33545 & 1.69648 & -0.87976 & H & 1.69534 \\ H & -0.14674 & 0.43005 & 2.13555 & C & -2.07801 \\ H & -0.0305 & -0.10293 & -2.17423 & H & -1.46384 \\ \hline C & 0.46931 & 3.09737 & 1.29508 & C & -1.49881 \\ H & 1.35082 & 3.01863 & 1.95825 & H & -0.57320 \\ H & 0.59028 & 4.00012 & 0.67633 & C & -2.50542 \\ H & -0.40674 & 3.24977 & 1.95178 & H & -3.50736 \\ \hline C & 2.43583 & -0.61679 & 1.73300 & H & -2.60788 \\ N & 3.20040 & -0.89258 & 2.58838 & H & -2.19178 \\ \hline C & 0.56733 & 2.67588 & -1.98555 & H & -2.05247 \\ H & 0.66856 & 3.70523 & -1.60779 & H & -1.26649 \\ H & 1.47797 & 2.43389 & -2.56433 & C & -3.10702 \\ H & -0.27502 & 2.65454 & -2.70186 & H & -3.85398 \\ \hline C & -0.90239 & -1.78551 & 0.24354 & H & -3.65458 \\ H & 0.08043 & -2.08672 & 0.64143 & H & -3.65458 \\ H & -0.08043 & -2.08672 & 0.64143 & H & -3.65458 \\ H & -0.08043 & -2.08672 & 0.64143 & H & -3.64090 \\ C & -1.107810 & -2.62558 & -1.03619 & H & -3.85396 \\ C & -1.07810 & -2.62558 & -1.03619 & H & -3.49592 \\ H & -9.9817 & -3.69450 & -0.78274 & H & -2.09438 \\ H & -2.05948 & -2.49091 & -1.51345 \\ H & -0.30175 & -2.39999 & -1.78554 & DAPr_1 \\ C & -1.09817 & -3.69450 & -0.78274 & H & -2.09438 \\ H & -2.05948 & -2.49091 & -1.51345 \\ H & -3.31345 & -0.13626 & -1.19290 & C & -1.47990 \\ H & -3.58376 & -1.07396 & 0.83017 & C & -0.08193 \\ H & -3.96170 & 0.56200 & -1.40091 & C & -0.08193 \\ H & -3.96170 & 0.56200 & -1.40091 & C & -0.08193 \\ H & -3.96170 & 0.56200 & -1.40091 & C & -0.08193 \\ H & -3.96170 & 0.56200 & -1.40091 & C & -0.08193 \\ H & -3.96170 & 0.56200 & -1.40091 & C & -0.08193 \\ H & -3.96170 & 0.56200 & -1.40091 &$	3.51424
C 1.47172 -0.26341 0.76636 N 2.91155 C 0.14539 0.46449 1.07684 C 2.23208 C 0.21080 0.18039 -1.14098 N 2.95338 C 0.50916 0.44121 -0.59231 C 1.64671 C 0.31527 1.86947 0.46163 H 2.69534 H -0.14674 0.43005 2.13555 C -2.07801 H -0.03305 -0.10293 -2.17423 H -1.46384 H 1.35082 3.01863 1.95825 H -0.57320 H 0.46674 3.24977 1.95178 H -3.50736 C 2.43583 -0.61679 1.73300 H -2.60788 N 3.20040 -0.89258 2.58838 H -2.17194 C 0.56733 2.67588 -1.98555 H -2.200866 N 3.20404 -0.89572 -2.07186 H -3.85398 C 0.56733 2.67583 C -3.10702 H <td>-0.45513</td>	-0.45513
C 0.14539 0.46449 1.07684 C 2.2308 C 0.21080 0.18039 -1.14098 N 2.95338 C 1.50916 -0.44121 -0.59231 C 1.64671 C 0.31527 1.86947 0.46163 H 2.077801 H -0.14674 0.43005 2.13555 C -2.07801 H -0.14674 0.43005 2.13555 C -2.07801 H -0.14674 0.43005 2.13555 H -0.57320 H 0.59028 4.00012 0.67633 C -2.50542 H -0.35082 0.61679 1.73300 H -2.60788 N 3.20040 -0.89258 2.58838 H -2.19178 C 2.51809 -1.03001 -1.38204 C -2.00086 N 3.20540 -1.67779 H -1.26649 N 3.2550 -1.51381 -2.09344 H -2.17194 C 0.56733 2.67548 -1.06193 H -3.85398	-0 74477
C 0.14070 1.04074 C 2.25233 C 0.21080 0.18039 1.14098 N 2.95338 C 1.50916 -0.44121 -0.59231 C 1.64671 C 0.31527 1.86947 0.46163 H 1.03567 C 0.35845 1.69648 -0.87976 H 1.69534 H -0.03305 -0.10293 2.17423 H -1.46384 C 0.46931 3.09737 1.29508 C -1.49881 H 1.55082 3.01863 1.95825 H -0.57320 H 0.40674 3.24977 1.95178 H -3.50736 C 2.43583 -0.61679 1.73300 H -2.60788 N 3.2040 -0.8288 2.58838 H -2.19178 C 2.51809 -1.03001 -1.38204 C -2.00086 N 3.2050 -1.51381 -2.09364 H -2.26499 C -0.20523 2.66433 C -3.43598 C	-1 55777
C 1.50916 0.44121 0.59231 C 1.64671 C 0.3192 0.23642 0.01055 H 1.03567 C 0.31527 1.86947 0.46163 H 2.67117 C 0.35845 1.66648 0.87976 H 1.69534 H -0.14674 0.43005 2.13555 C -2.07801 H -0.03305 -0.10293 -2.17423 H -1.46384 C 0.46931 3.09737 1.29508 C -1.49881 H 1.35082 3.01863 1.95825 H -0.57320 H 0.59028 4.00012 0.67633 C -2.60788 N 3.2040 -0.89258 2.5838 H -2.19178 C 2.51809 -1.03001 -1.38204 C -2.00086 N 3.2040 -0.89258 -2.6833 C -3.85398 C 2.51809 -1.03001 -1.38204 C -3.85398 C	-2 3/328
C 1.30710 -0.44121 -0.39211 C 1.04071 C -0.31527 1.86947 0.46163 H 2.67117 C 0.31527 1.86947 0.46163 H 2.67117 C 0.35845 1.69648 -0.87976 H 1.69534 H -0.14674 0.43005 2.13555 C -2.07801 H -0.14674 0.43005 2.13555 H -0.57320 H 0.59028 4.00012 0.67633 C 2.50542 H -0.40674 3.24977 1.95178 H -3.50736 C 2.43583 -0.61679 1.73300 H -2.60788 N 3.2040 0.82258 2.58838 H -2.19178 C 2.51809 -1.03001 -1.38204 C -2.00086 N 3.2040 0.82555 H -2.95247 H 0.66856 3.70523 -1.60779 H -1.26649 H 1.47797 2.43389 -2.64333 C -3.10702 H -2.057545	1 54773
C -0.31052 -0.23042 0.01033 H 1.03307 C 0.31527 1.86947 0.46163 H 2.67117 C 0.35845 1.69648 -0.87976 H 1.69534 H -0.14674 0.43005 2.13555 C -2.07801 H -0.03305 -0.10293 -2.17423 H -1.46384 C 0.46931 3.09737 1.29508 C -1.49881 H 1.35082 3.01863 1.95825 H -0.57320 H 0.59028 4.00012 0.67633 C -2.50542 H -0.40674 3.24977 1.95178 H -3.50736 C 2.43583 -0.61679 1.73300 H -2.60788 N 3.20040 -0.89258 2.58838 H -2.19178 C 2.51809 -1.03001 -1.38204 C -2.00086 N 3.32550 -1.51381 -2.09364 H -2.17194 C 0.56733 2.67588 -1.98555 H -2.95247 H 0.66856 3.70523 -1.60779 H -1.26649 H 1.47797 2.43389 -2.56433 C -3.10702 H -0.27502 2.65545 -2.70186 H -3.85398 C -0.90239 -1.78551 0.24354 H -3.65458 H 0.08043 -2.08672 0.64143 H -2.64090 C -2.18117 0.50574 -0.16844 C -2.79871 H -1.91978 1.49013 -0.58842 H -3.85398 C -1.07810 -2.62558 -1.03619 H -3.49592 H -0.98017 -3.69450 -0.78274 H -2.09438 H -2.05948 -2.49091 -1.51345 H -0.30175 -2.39999 -1.78554 DA-iPr : C -1.09957 -2.21738 1.32356 Transition state H -2.95581 -2.10766 0.99764 Symmetry: C_1 H -1.775161 -3.28332 1.55793 Electronic energy: H -1.7792 -1.65193 2.26069 $C -3.13345 -0.13626 -1.19290 C -1.14990R -3.96170 0.56200 -1.40091 C -0.02011H -2.63072 -0.34663 -2.15101 C -1.18849C -2.92915 0.82364 1.14085 C 0.98074H -3.77406 1.49731 0.91770 C -1.02514H -3.3448 -0.06756 1.63219 C -0.088173H -3.24840 1.34304 1.86844 H 0.12697H -3.77406 1.49731 0.91770 C -1.02514H -3.77205 C -0.06455 0.5645 0.02076 N -3.27720C -0.02247 -0.21460 -1.13840 C -1.94762C -0.02247 -0.21460 -1.13840 C -1.94762C -1.02397 -0.05307 0.01254 C -1.41729$	2 42208
C 0.31521 1.69648 0.87976 H 1.69534 H -0.14674 0.43005 2.13555 C -2.07801 H -0.03305 -0.10293 -2.17423 H -1.46384 C 0.46931 3.09737 1.295088 C -1.49881 H 1.35082 3.01863 1.95825 H -0.57320 H 0.59028 4.00012 0.67633 C -2.50542 H -0.40674 3.24977 1.95178 H -3.50736 C 2.43583 -0.61679 1.73300 H -2.60788 N 3.20040 -0.89258 2.58838 H -2.19178 C 2.51809 -1.03001 -1.38204 C -2.00086 N 3.2050 -1.51381 -2.09534 H -2.6574 C 0.06856 3.70523 -1.60779 H -1.26649 H -0.77502 2.65545 -2.70186 H -3.85398	2.42306
C 0.53843 1.09048 -0.87976 H 1.09030 H -0.03305 -0.10293 -2.17423 C -2.07801 H -0.03305 -0.10293 -2.17423 H -1.46384 C 0.46931 3.09737 1.29508 C -1.49881 H 1.35082 3.01863 1.95825 H -0.57320 H 0.59028 4.00012 0.67633 C -2.50542 H -0.40674 3.24977 1.95178 H -3.50736 C 2.43583 -0.61679 1.73300 H -2.60788 N 3.20040 -0.89258 2.58838 H -2.19178 C 2.51809 -1.03001 -1.38204 C -2.00086 N 3.32550 -1.51381 -2.09364 H -2.17194 C 0.566356 3.70523 -1.60779 H -1.26649 H 1.47797 2.43389 -2.56433 C -3.10702 H -0.27502 2.65545 -2.70186 H -3.85398 C -0.90239 -1.78551 0.24354 H -3.65458 H 0.08043 -2.08672 0.64143 H -2.64090 C -2.18117 0.50574 -0.16844 C -2.79871 H -1.91978 1.49013 -0.58842 H -3.38916 C -1.07810 -2.62558 -1.03619 H -3.49592 H -0.98017 -3.69450 -0.78274 H -2.09438 H -2.05948 -2.49091 -1.51345 H -0.98017 -3.69450 -0.78274 H -2.09438 H -2.05948 -2.49091 -1.51345 H -2.95581 -2.10766 0.99764 Symmetry: C_1 H -1.77929 -1.65193 2.26669 $<^{S^3} = 1.0019$ C -3.13345 -0.13626 -1.19290 C -1.41390 H -3.58376 -1.07396 -0.83017 C -0.08119 H -3.58376 -1.07396 -0.83017 C -0.08193 H -3.96170 0.56200 -1.40091 C -0.02011 H -3.63072 -0.34663 -2.15101 C -1.18849 C -2.92915 0.82364 1.14085 C 0.09874 H -3.77406 1.49731 0.91770 C -1.02514 H -2.72567 Electronic energy: -769.548148042 H -1.17824 C 1.36232 -0.58786 -0.06517 N -2.265590 C -0.04152 0.55645 0.85982 C -2.43526 C -0.04152 0.55645 0.85982 C -2.43526 C -0.04152 0.55645 0.02076 N -3.27720 C -0.02247 -0.21460 -1.13840 C -1.94762 C 1.02597 H -2.72567	1.89041
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.87382
H -0.05305 -0.10293 -2.17423 H -1.49881 C 0.46931 3.09737 1.29508 C -1.49881 H 1.35082 3.01863 1.95825 H -0.57320 H 0.59028 4.00012 0.67633 C -2.50542 H -0.40674 3.24977 1.95178 H -3.50736 C 2.43583 -0.61679 I.73300 H -2.60788 N 3.20040 -0.89258 2.58838 H -2.19178 C 2.51809 -1.03001 -1.38204 C -2.00086 N 3.32550 -1.51381 -2.09364 H -2.17194 C 0.56733 2.65585 H -2.95247 H 0.66856 3.70523 -1.60779 H -1.26649 H -1.47797 2.4338 -2.56433 C -3.10702 H -2.65585 H -0.30175 -3.69450 -0.78274 H -3.69450 H -3.49592 H -0.08017 -3.69450 -0.78274	1.03171
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.81091
H 1.35082 3.01863 1.95825 H -0.57320 H 0.59028 4.00012 0.67633 C -2.50542 H -0.40674 3.24977 1.95178 H -3.50736 C 2.43583 -0.61679 1.73300 H -2.60788 N 3.20040 -0.89258 2.58838 H -2.19178 C 2.51809 -1.03001 -1.38204 C -2.00866 N 3.32550 -1.51381 -2.09364 H -2.17194 C 0.56733 2.67588 -1.98555 H -2.95247 H 0.66856 3.70523 -1.60779 H -1.26649 H -0.47792 2.43389 -2.56433 C -3.10702 H -0.27502 2.65545 -2.70186 H -3.85398 C -0.90239 -1.78551 0.24354 H -3.38916 C -1.07810 -2.62558 -1.03619 H -3.49592 H -0.30175 -2.39999 -1.78554 DA-iPrz </td <td>-1.45417</td>	-1.45417
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1.90963
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1.40032
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1.09404
N 3.20040 -0.89258 2.58838 H -2.19178 C 2.51809 -1.03001 -1.38204 C -2.00086 N 3.32550 -1.51381 -2.09364 H -2.19178 C 0.56733 2.67588 -1.98555 H -2.295247 H 0.66856 3.70523 -1.60779 H -1.26649 H 1.47797 2.43389 -2.56433 C -3.10702 H -0.27502 2.65545 -2.70186 H -3.85398 C -0.90239 -1.78551 0.24354 H -3.65458 H 0.08043 -2.06774 0.16844 C -2.79871 H -1.91978 1.49013 -0.58842 H -3.38916 C -1.07810 -2.6558 -10.3619 H -2.09438 H -2.05948 -2.49091 -1.51345 DA-iPr2 C -1.90957 -2.21738 1.32356 Transition state Symmetry: C_1	-2.40172
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.70966
N 3.32550 -1.51381 -2.09364 H -2.17194 C 0.56733 2.67588 -1.98555 H -2.95247 H 0.66856 3.70523 -1.60779 H -1.26649 H 1.47797 2.43389 -2.56433 C -3.85398 C -0.90239 -1.78551 0.24354 H -3.65458 H 0.08043 -2.08672 0.64143 H -2.64090 C -2.18117 0.50574 -0.16844 C -2.79871 H -1.91978 1.49013 -0.58842 H -3.38916 C -1.07810 -2.62558 -10.3619 H -2.09438 H -2.05948 -2.49901 -1.51345 DA-iPr2 C -1.90957 -2.21738 1.32356 Transition state H -2.95581 -2.10766 0.99764 Symmetry: C_1 H -1.77929 -1.65193 2.26069 $ C -1.41990$	-2.42288
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-3.41507
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2.09931
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2.56087
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.55262
C-0.90239-1.785510.24354H-3.65458H0.08043-2.086720.64143H-2.64090C-2.181170.50574-0.16844C-2.79871H-1.919781.49013-0.58842H-3.38916C-1.07810-2.62558-1.03619H-3.49592H-0.98017-3.69450-0.78274H-2.09438H-2.05948-2.49091-1.51345DA-iPr2C-1.90957-2.217381.32356Transition stateH-2.95581-2.107660.99764Symmetry: C1H-1.75161-3.283321.55793Electronic energy:H-1.77929-1.651932.26069 $S^2> = 1.0019$ C-3.13345-0.13626-1.19290C-1.41990H-3.58376-1.07396-0.83017C-0.02011H-2.63072-0.34663-2.15101C-1.18849C-2.929150.823641.14085C0.98074H-3.774061.497310.91770C-1.02514H-3.28401.343041.86844H0.12697H-2.284401.343041.86844H0.12697H-2.284401.343041.86844H0.12697H-2.284401.343041.86844H-1.17824C1.35275-0.065450.85982C-2.43526C-0.02247-0.21460 <t< td=""><td>-0.11934</td></t<>	-0.11934
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 41758
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.02098
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 74023
In -1.9760 1.49013 -0.3042 In -3.30510 C -1.07810 -2.62558 -1.03619 H -3.49592 H -0.90017 -3.69450 -0.78274 H -2.09438 H -2.05948 -2.49091 -1.51345 DA- <i>i</i> Pr2C -1.90957 -2.21738 1.32356 Transition stateH -2.95581 -2.10766 0.99764 Symmetry: C_1 H -1.75161 -3.28332 1.55793 Electronic energy:H -1.77929 -1.65193 2.26069 $ = 1.0019$ C -3.13345 -0.13626 -1.19290 C -1.41990 H -3.58376 -1.07396 -0.83017 C -0.08193 H -3.96170 0.56200 -1.40091 C -0.02011 H -2.63072 -0.34663 -2.15101 C -1.18849 C -2.92915 0.82364 1.14085 C 0.98074 H -3.7406 1.49731 0.91770 C -1.02514 H -3.28440 1.34304 1.86844 H 0.12697 H -2.28440 1.34304 1.86844 H 0.12697 C 1.35275 0.06545 0.85982 C -2.43526 </td <td>2 58321</td>	2 58321
C-1.0310-2.02.038-1.03019H-3.49322H-0.98017-3.69450-0.78274H-2.09438H-2.05948-2.49091-1.51345H-2.09438H-0.30175-2.39999-1.78554DA-iPr2C-1.90957-2.217381.32356Transition stateH-2.95581-2.107660.99764Symmetry: C_1 H-1.75161-3.283321.55793Electronic energy:H-1.77929-1.651932.26069 $ = 1.0019$ C-3.13345-0.13626-1.19290C-1.41990H-3.58376-1.07396-0.83017C-0.08193H-3.961700.56200-1.40091C-0.02011H-2.63072-0.34663-2.15101C-1.18849C-2.929150.823641.14085C0.98074H-3.774061.497310.91770C-1.02514H-3.34486-0.067561.63219C-0.68517H-2.284401.343041.86844H0.12697H-2.284401.343041.86844H0.12697H-2.72567H-2.72567H-2.72567Electronic energy: -769.548148042H-1.17824C-1.04976C-0.02247-0.21460-1.13840C-1.94762C-0.02247-0.21460-1.13840C-1.94762C-1.02397 <t< td=""><td>1.07446</td></t<>	1.07446
H -0.38017 -3.09430 -0.78274 H -2.09438 H -2.05948 -2.49091 -1.51345 DA-iPr2C -1.90957 -2.21738 1.32356 Transition stateH -2.95581 -2.10766 0.99764 Symmetry: C_1 H -1.75161 -3.28332 1.55793 Electronic energy:H -1.77929 -1.65193 2.26069 $ = 1.0019$ C -3.13345 -0.13626 -1.19290 C -1.41990 H -3.58376 -1.07396 -0.83017 C -0.08193 H -3.96170 0.56200 -1.40091 C -0.02011 H -2.63072 -0.34663 -2.15101 C -1.18849 C -2.92915 0.82364 1.14085 C 0.98074 H -3.77406 1.49731 0.91770 C -1.02514 H -3.28440 1.34304 1.86844 H 0.12697 H -2.28440 1.34304 1.86844 H 0.12697 H -2.28440 1.34304 1.86844 H 0.12697 H -2.28440 1.34304 1.86844 H 0.12697 H -2.72567 H -2.72567 H -2.72567 Electronic energy: -769.548148042 H -1.17824 CC 0.02247 -0.21460 -1.13840 C -1.94762 C -0.02247 -0.21460 -1.13840 C -1.94762 C<	2 15579
H-2.03948-2.49091-1.31343H-0.30175-2.39999-1.78554 \mathbf{DA} -i \mathbf{Pr}_2 C-1.90957-2.217381.32356Transition stateH-2.95581-2.107660.99764Symmetry: C_1 H-1.75161-3.283321.55793Electronic energy:H-1.77929-1.651932.26069 $< S^2 > = 1.0019$ C-3.13345-0.13626-1.19290C-1.41990H-3.58376-1.07396-0.83017C-0.08193H-3.961700.56200-1.40091C-0.02011H-2.63072-0.34663-2.15101C-1.18849C-2.929150.823641.14085C0.98074H-3.374061.497310.91770C-1.02514H-2.284401.343041.86844H0.12697H-2.284401.343041.86844H0.37319DA-iPr2C-0.65450.85982C-2.43526QC isomerH-2.02247-0.21460-1.13840C-1.94762C-0.02247-0.21460-1.13840C-1.94762C-1.02397-0.053070.01254C-1.41729C1.044081.364890.35545H-1.68301	2.13378
H-0.30175-2.39999-1.78534DA-IFr2C-1.90957-2.217381.32356Transition stateH-2.95581-2.107660.99764Symmetry: C_1 H-1.75161-3.283321.55793Electronic energy:H-1.77929-1.651932.26069 $ = 1.0019$ C-3.13345-0.13626-1.19290C-1.41990H-3.58376-1.07396-0.83017C-0.08193H-3.961700.56200-1.40091C-0.02011H-2.63072-0.34663-2.15101C-1.18849C-2.929150.823641.14085C0.98074H-3.774061.497310.91770C-1.02514H-3.34486-0.067561.63219C-0.68517H-2.284401.343041.86844H0.12697H-2.284401.343041.86844H0.12697H-2.72567H-2.72567H-2.72567Electronic energy: -769.548148042H-1.17824C-2.43526C-0.02247-0.21460-1.13840C-1.94762C1.36632-0.58786-0.60517N-3.27720C-1.02397-0.053070.01254C-1.41729C1.044081.364890.35545H-1.68301	
C-1.90957-2.217381.32356Iransition stateH-2.95581-2.107660.99764Symmetry: C_1 H-1.75161-3.283321.55793Electronic energy:H-1.77929-1.651932.26069 $ = 1.0019$ C-3.13345-0.13626-1.19290C-1.41990H-3.58376-1.07396-0.83017C-0.02011H-3.961700.56200-1.40091C-0.02011H-2.63072-0.34663-2.15101C-1.18849C-2.929150.823641.14085C0.98074H-3.774061.497310.91770C-1.02514H-3.34486-0.067561.63219C-0.68517H-2.284401.343041.86844H0.12697H-2.284401.343041.86844H0.12697H-2.284401.343041.86844H0.12697H-2.284401.343041.86844H0.12697H-2.284401.343041.86844H0.12697H-2.284401.343041.86844H0.12697C1.35275-0.065450.85982C-2.43526C-0.0217-0.21460-1.13840C-1.94762C1.36632-0.58786-0.60517N-3.27720C-0.02397-0.053070.01254C-1.41729C1.044081.3648	
H-2.95381-2.10766 0.99764 Symmetry: C_1 H-1.75161-3.283321.55793Electronic energy:H-1.77929-1.651932.26069 $ = 1.0019$ C-3.13345-0.13626-1.19290C-1.41990H-3.58376-1.07396-0.83017C-0.02011H-2.63072-0.34663-2.15101C-1.18849C-2.929150.823641.14085C0.98074H-3.774061.497310.91770C-1.02514H-3.34486-0.067561.63219C-0.68517H-2.284401.343041.86844H0.12697H-2.284401.343041.86844H0.12697H-2.284401.343041.86844H0.12697H-2.284401.343041.86844H0.12697CisomerH-2.04890H-2.72567Electronic energy: -769.548148042H-1.17824CC1.35275-0.065450.85982C-2.43526C-0.02247-0.21460-1.13840C-1.94762C1.36632-0.58786-0.60517N-2.56590C-1.02397-0.053070.01254C-1.41729C1.044081.364890.35545H-1.68301	
H-1./5161-3.283321.55793Electronic energy:H-1.77929-1.651932.26069 $< S^2 > = 1.0019$ C-3.13345-0.13626-1.19290C-1.41990H-3.58376-1.07396-0.83017C-0.08193H-3.961700.56200-1.40091C-0.02011H-2.63072-0.34663-2.15101C-1.18849C-2.929150.823641.14085C0.98074H-3.774061.497310.91770C-1.02514H-3.34486-0.067561.63219C-0.68517H-2.284401.343041.86844H0.12697H-2.284401.343041.86844H0.12697H-2.284401.343041.86844H0.12697H-2.284401.343041.86844H0.12697CisomerH-2.04890H-2.72567Electronic energy: -769.548148042H-1.17824CC1.35275-0.065450.85982C-2.43526C-0.02247-0.21460-1.13840C-1.94762C1.36632-0.58786-0.60517N-2.56590C-1.02397-0.053070.01254C-1.41729C1.044081.364890.35545H-1.68301	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	y: -769.504018
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.09449
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.61230
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.20283
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.93746
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.02751
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1.43532
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1.16235
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.89045
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.64249
QC isomerH-2.04890Symmetry: C_1 H-2.72567Electronic energy: -769.548148042H-1.17824C1.35275-0.065450.85982CC-0.041520.556451.02076NC-0.02247-0.21460-1.13840CC1.36632-0.58786-0.60517NC-1.02397-0.053070.01254CC1.044081.364890.35545H	-2.62855
Symmetry: C_1 H-2.72567Electronic energy: -769.548148042H-1.17824C1.35275-0.065450.85982CC-0.041520.556451.02076NC-0.02247-0.21460-1.13840CC1.36632-0.58786-0.60517NC-1.02397-0.053070.01254CC1.044081.364890.35545H	-2.52457
Electronic energy: -769.548148042 H -1.17824 C 1.35275 -0.06545 0.85982 C -2.43526 C -0.04152 0.55645 1.02076 N -3.27720 C -0.02247 -0.21460 -1.13840 C -1.94762 C 1.36632 -0.58786 -0.60517 N -2.56590 C -1.02397 -0.05307 0.01254 C -1.41729 C 1.04408 1.36489 0.35545 H -1.68301	-2.76910
C 1.35275 -0.06545 0.85982 C -2.43526 C -0.04152 0.55645 1.02076 N -3.27720 C -0.02247 -0.21460 -1.13840 C -1.94762 C 1.36632 -0.58786 -0.60517 N -2.56590 C -1.02397 -0.05307 0.01254 C -1.41729 C 1.04408 1.36489 0.35545 H -1.68301	-3 54126
C -1.55275 -0.00545 0.85982 C -2.45520 C -0.04152 0.55645 1.02076 N -3.27720 C -0.02247 -0.21460 -1.13840 C -1.94762 C 1.36632 -0.58786 -0.60517 N -2.56590 C -1.02397 -0.05307 0.01254 C -1.41729 C 1.04408 1.36489 0.35545 H -1.68301	0.26722
C -0.04132 0.35043 1.02070 N -3.27720 C -0.02247 -0.21460 -1.13840 C -1.94762 C 1.36632 -0.58786 -0.60517 N -2.56590 C -1.02397 -0.05307 0.01254 C -1.41729 C 1.04408 1.36489 0.35545 H -1.68301	0.20722
C -0.2247 -0.21400 -1.13840 C -1.94762 C 1.36632 -0.58786 -0.60517 N -2.56590 C -1.02397 -0.05307 0.01254 C -1.41729 C 1.04408 1.36489 0.35545 H -1.68301	1 07016
C 1.30032 -0.36760 -0.00317 IN -2.36590 C -1.02397 -0.05307 0.01254 C -1.41729 C 1.04408 1.36489 0.35545 H -1.68301	1.71210 2 87805
C 1.04408 1.36489 0.35545 H -1.68301	2.07000
C 1.04408 1.30489 0.35545 H -1.68301	-1.0/330
	-2./38/0
С 1.05551 0.84059 -1.11458 Н -2.36693	-1.12282

2.65526	2.79981	0.45047		
1.01775	3.51424	0.49561		
2.20187	-0.45513	1.92786		
2.91155	-0.74477	2.82258		
2.23208	-1.55777	-1.17360		
2.95338	-2.34328	-1.67436		
1.64671	1.54773	-2.29526		
1.03567	2.42308	-2.57592		
2.67117	1.89641	-2.08404		
1.69534	0.87382	-3.16549		
2.07801	1.03171	-0.40255		
1.46384	1.81091	-0.89787		
1.49881	-1.45417	0.52328		
0.57320	-1.90963	0.92797		
2.50542	-1.40032	1.68418		
3.50736	-1.09404	1.34047		
2.60788	-2.40172	2.13409		
2.19178	-0.70966	2.48381		
2.00086	-2.42288	-0.56375		
2.17194	-3.41507	-0.11356		
2.95247	-2.09931	-1.01207		
1.26649	-2.56087	-1.37322		
3.10702	0.55262	-1.43912		
3.85398	-0.11934	-0.98561		
3.65458	1.41758	-1.84966		
2.64090	0.02098	-2.28443		
2.79871	1.74023	0.76013		
3.38916	2.58321	0.36274		
3.49592	1.07446	1.29001		
2.09438	2.15578	1.49851		
2				
on state				
ary: C_1				
iic energy: -769.504018791				

2.03875 -2.10458 0.83073 1.93130

0,		
$S^2 > = 1.0019$		
-1.41990	0.09449	0.69701
-0.08193	-0.61230	0.98869
-0.02011	0.20283	-1.15544
-1.18849	0.93746	-0.50051
0.98074	0.02751	0.06126
-1.02514	-1.43532	0.15305
-0.68517	-1.16235	-1.26127
0.12697	-0.89045	2.02467
0.37319	0.64249	-2.07863
-1.78925	-2.62855	0.64785
-2.04890	-2.52457	1.71264
-2.72567	-2.76910	0.08408
-1.17824	-3.54126	0.53370
-2.43526	0.26722	1.67171
-3.27720	0.35562	2.49278
-1.94762	1.97216	-1.00881
-2.56590	2.87805	-1.47384
-1.41729	-1.67530	-2.44809
-1.68301	-2.73876	-2.32924
-2.36693	-1.12282	-2.62024

Н	-0.81681	-1.56904	-3.36695
C	1 42510	1 /1231	0.63020
	1.42310	1.41231	1.01000
н	0.48/0/	1.86327	1.01098
С	2.06944	-1.02943	-0.30932
Η	1.49960	-1.79610	-0.87667
С	3 16297	-0 50995	-1 25553
ц	3 86002	0.15529	0.72250
11	2.745.61	1.25702	-0.75550
н	5.74501	-1.35/85	-1.05500
Н	2.74727	0.04216	-2.11385
С	2.70296	-1.77729	0.87853
Η	3.31730	-2.61079	0.49761
н	3 36161	-1 13456	1 48186
ц	1 04410	2 21180	1.54885
	1.94410	-2.21100	1.54665
C	1.96/34	2.41297	-0.40/39
Н	2.10306	3.39597	0.07373
Η	2.94209	2.11124	-0.81864
Η	1.26941	2.56116	-1.24656
С	2 37761	1 32287	1 83376
ц	3 30611	1.02033	1.52808
п	3.39011	1.05055	1.52090
н	2.45426	2.30913	2.32078
Η	2.02769	0.60425	2.59276
D۵	-iPro		
C /	C conicelinter	reaction	
3 0/	S ₁ conical filter	section	
Sy	mmetry: C_1		
С	1.34583882	-0.19002657	0.72195025
С	0.03321549	0.36497536	1.07431541
С	0.07352392	-0.15715592	-1.12432493
č	1 26364441	-0.9/329182	-0 55575592
C	0.00020074	0.15920296	0.02011057
C	-0.98039874	-0.15829280	0.03211257
С	0.88327148	1.44557580	0.39417564
С	0.74257759	1.17858866	-0.98090313
Н	-0.21970120	0.51583964	2.10719479
н	-0 25127061	-0 41274170	-2.11902281
C	1 40601418	2 64047143	1.05452520
	1.47071410	2.04947143	2.00071.402
Н	1./3502285	2.43241165	2.088/1403
Н	2.41884041	2.94827719	0.56915556
Η	0.81592821	3.49630722	1.04691781
С	2.40119689	-0.30268217	1.69639401
Ν	3 22120820	-0 37024829	2 47924022
C	2 40400174	1 1/205/2/	1 35/33763
	2.40490174	-1.14003404	-1.55455705
IN ~	3.30/0/280	-1.33328439	-2.05/8288/
С	1.33359654	1.92866650	-2.11153766
Η	1.76283375	2.87404208	-1.81292728
Η	2.11020157	1.30385091	-2.55015498
н	0 58241219	2.08748525	-2.87885728
C	2 08228602	0.01214611	0.25051658
	-2.06326073	1.752(50(0)	-0.23931038
Н	-1.55189378	1./5365960	-0./0141/21
С	-1.42085065	-1.60626414	0.41748794
Η	-0.51949679	-2.07060109	0.79305155
С	-2.79198097	1.50443521	0.96900463
Н	-3,39254906	2.35326916	0.65650527
ц	_3 / 56805//	0.80175247	1 /5138367
11	-3.+3000344	1.0001/334/	1.43130302
H	-2.09136036	1.86864931	1./12164//
С	-3.12612887	0.49565781	-1.30508185
Η	-3.82779037	-0.23002286	-0.91320676
Η	-3.69959773	1.36620954	-1.60811289
Н	-2.67479242	0.07660946	-2.19733673
~		5.57 5507 10	
C	-1 85820010	-2 10272222	-0 75682800
C	-1.85832212	-2.49372332	-0.75682899

Н	-2.79323922	-2.18278302	-1.20473107
Η	-1.09986427	-2.53557864	-1.52834018
С	-2.45290262	-1.68769285	1.55063168
Н	-3.44809177	-1.40199526	1.22976532
H	-2.51309391	-2.71291401	1.90130507
Н	-2.18570531	-1.07322535	2.40440282
DA	- <i>i</i> Pr ₂		
S_1	minimum		
Sy	mmetry: C_1		
C	1.319616	-0.411196	0.844051
С	0.090760	0.469003	1.042679
С	0.105031	-0.100562	-1.128927
C	1.325046	-0.775506	-0.514625
C	-0.951577	-0.100502	0.023646
C	0.773025	1.585331	0.32/164
С и	0.780730 0.107056	1.222707	-1.03/140
п Ц	-0.197930	0.040332	2.003908
C	1 399810	2 767358	0.984560
Н	1.852386	2.4792.02	1 927259
Н	2.160314	3.227554	0.367652
Н	0.643249	3.518868	1.205409
С	2.299371	-0.618923	1.835429
Ν	3.070743	-0.758633	2.667221
С	2.312685	-1.448707	-1.260577
Ν	3.091181	-1.984217	-1.903815
С	1.435354	1.924598	-2.180971
Η	2.199753	2.619640	-1.859669
Н	1.887133	1.206737	-2.856708
Н	0.690380	2.479535	-2.749503
C	-1.385518	-1.546109	0.421491
H C	-0.490389	-2.003555	0.820744
с н	-2.075275	1 785242	-0.281000
C	-1.333910	-2 455482	-0.737238
Н	-1 932871	-3 467614	-0 369441
Н	-2.751956	-2.165160	-1.191382
Н	-1.060717	-2.498275	-1.522812
С	-2.423837	-1.623915	1.549261
Η	-3.419546	-1.351402	1.219531
Η	-2.476062	-2.645281	1.912123
Η	-2.163789	-0.996917	2.395365
С	-3.113245	0.498358	-1.316828
Н	-3.804922	-0.231958	-0.915726
H	-3.699381	1.356662	-1.630493
H	-2.656776	0.076124	-2.205297
C II	-2.788097	1.545396	0.941479
п Ц	-3.394708	2.383810	0.017821
H	-2.092548	1.923796	1.682416
DA	- <i>t</i> Bu ₂		
NE	BD isomer		
Sy	mmetry: C_1		
Ele	ectronic energy:	-848.0569212	18
C	1.63619	-0.04233	0.68576
C	0.219/5	0.40798	1.10/39
C	0.251/1	0.33843	-1.12014
C	1.05415	-0.10307	-0.00147

С	-0.67811	-0.30910	0.00156
С	0.19613	1.87798	0.63889
С	0.23618	1.84789	-0.71127
Η	-0.01498	0.22696	2.16530
Н	-0.01018	0.15427	-2.17793
С	0.25400	3.02331	1.59266
Н	1.15568	2.96568	2.23056
Н	0.27138	3.99217	1.06945
Н	-0.61531	3 02193	2.27678
C	2,70992	-0.24356	1 57688
N	3 57127	-0.39507	2 36904
Ċ	2 688/1	-0.42970	-1 55746
N	2.00041	0.71023	2 33881
C	0.40780	2 04803	1 70362
с u	0.40780	2.94603	-1.70302
п	0.3/313	3.93973	-1.22027
п	1.561/0	2.83009	-2.22038
П	-0.30962	2.91990	-2.48831
C	-0.59934	-1.93670	0.03290
C	-2.22063	0.22902	-0.00602
C	-0.75678	-2.49437	-1.40803
Н	-0.84221	-3.59367	-1.36850
Н	-1.62406	-2.11339	-1.95790
Η	0.14320	-2.26539	-2.00343
С	-1.62879	-2.58114	1.00947
Η	-2.67740	-2.30559	0.86856
Η	-1.56938	-3.67648	0.89751
Η	-1.35885	-2.35413	2.05516
С	-3.17729	-0.61826	-0.89849
Η	-3.19291	-1.69554	-0.71450
Н	-4.20533	-0.25236	-0.73960
Н	-2.94643	-0.46267	-1.96613
С	-2.75165	0.30424	1.45101
Η	-3.82591	0.55574	1.43529
Н	-2.63503	-0.61793	2.03191
Н	-2.24087	1.11168	2.00163
С	0.72109	-2.60394	0.53721
Н	1.57784	-2.49873	-0.13926
Н	1.02239	-2.26534	1.54178
Н	0.52180	-3.68581	0.62069
C	-2.49137	1.65608	-0.57681
н	-2 11428	2 47252	0.04980
н	-2.09672	1 78628	-1 59652
н	-3 58687	1.7652	-0.64501
11	5.50007	1.77052	0.04501
DA	. <i>t</i> Ru2		
	isomer		
QU	isoliter metry: C		
5 yn	inten y. Cl	848 060822	5/3
C	1 50227	0.24147	0 77041
C	-1.30337	-0.24147	-0.77041
C	-0.00905	0.17124	-1.14020
C	-0.07110	0.22360	1.14042
C	-1.50629	-0.19284	0.78256
C	0.91021	-0.11722	0.00473
C	-1.08398	1.24005	-0.80986
C	-1.08170	1.28428	0.75052
H	0.21847	0.05178	-2.19364
Н	0.20703	0.13032	2.19304
С	-1.61182	2.30702	-1.71933
Η	-1.66624	1.93799	-2.75610
Η	-2.62738	2.61638	-1.42158

Н	-0.96307	3.19920	-1.70563
С	-2.41180	-0.92276	-1.62130
Ν	-3.16478	-1.46539	-2.34715
С	-2.41894	-0.82022	1.66974
Ν	-3.17754	-1.31115	2.42559
С	-1.60145	2.40083	1.60464
Η	-0.93866	3.28255	1.56167
Н	-2.60804	2.71427	1.28156
Н	-1.67270	2.08020	2.65631
С	2.11247	0.95324	-0.00221
С	1.31937	-1.67409	0.01803
С	1.70160	-2.17480	-1.39732
Н	2.51831	-1.61039	-1.86413
Η	2.02488	-3.22745	-1.33153
Η	0.83289	-2.14999	-2.07547
С	2.46772	-2.00185	1.00001
Η	2.62909	-3.09322	0.99950
Η	3.42712	-1.53539	0.73732
Н	2.21145	-1.71541	2.03371
С	2.71785	1.15297	1.40984
Η	3.10684	0.23201	1.86036
Н	3.55612	1.86739	1.34444
Η	1.97837	1.58789	2.10211
С	3.24654	0.60673	-0.99486
Н	3.98258	1.42877	-0.98880
Η	3.79001	-0.31474	-0.74524
Η	2.86906	0.51772	-2.02706
С	1.62576	2.35951	-0.43941
Η	1.29019	2.38124	-1.48773
Η	0.81860	2.74761	0.19826
Η	2.47174	3.06180	-0.35225
С	0.14859	-2.58785	0.46907
Η	-0.15694	-2.40902	1.51110
Н	-0.73616	-2.50911	-0.17831
Η	0.48946	-3.63476	0.40707

DA-tBu₂

Trar	sition state		
Sym	metry: C_1		
Elec	tronic energy:	-848.003211	480
$< S^{2} >$	> = 1.0156		
С	-1.54123	-0.27892	-0.68068
С	-0.16716	0.23841	-1.12609
С	-0.15999	0.14484	1.15215
С	-1.42919	-0.61461	0.74315
С	0.86406	-0.14664	-0.02873
С	-0.99441	1.39306	-0.61890
С	-0.72406	1.52086	0.81064
Н	0.07124	0.18410	-2.19200
Н	0.17847	-0.02536	2.18023
С	-1.66815	2.40604	-1.49073
Н	-1.95389	1.97331	-2.46190
Η	-2.57840	2.80717	-1.01694
Η	-0.98347	3.25187	-1.68522
С	-2.57331	-0.64081	-1.57324
Ν	-3.42058	-0.90365	-2.35312
С	-2.39803	-1.12200	1.59145
Ν	-3.18864	-1.58191	2.35259
С	-1.39575	2.43334	1.77172
Η	-1.65488	3.39671	1.30286

H -0.75444 2.63743 2.64660 C 1.30013 -1.69117 -0.12459 C 2.09503 0.91361 0.01437 C 2.58697 1.11954 1.46952 H 2.88805 0.18868 1.96796 H 3.46152 1.79207 1.46652 H 1.81138 1.60219 2.08647 C 3.31114 0.53387 -0.87223 H 4.08378 1.31013 -0.74067 H 3.78072 -0.42623 -0.62859 H 3.04327 0.52912 -1.94138 C 2.39044 -2.06088 0.91219 H 2.61181 -3.13798 0.82582 H 3.34040 -1.56050 0.79221 H 2.02847 -1.8803 1.94006 C 1.75779 -2.06121 -1.56766 H 0.91027 -1.99817 -2.26383 C 1.73287 2.33436 -0.50578	Н	-2.33858	1.99562	2.16467
C 1.30013 -1.69117 -0.12459 C 2.09503 0.91361 0.01437 C 2.58697 1.11954 1.46952 H 2.88805 0.18868 1.96796 H 3.46152 1.79207 1.46652 H 1.81138 1.60219 2.08647 C 3.31114 0.53387 -0.87223 H 4.08378 1.31013 -0.74067 H 3.78072 -0.42623 -0.62859 H 3.04327 0.52912 -1.94138 C 2.39044 -2.06088 0.91219 H 2.61181 -3.13798 0.82582 H 3.34040 -1.52605 0.79221 H 2.02847 -1.88803 1.94006 C 1.75779 -2.06121 -1.56098 H 2.57418 -1.45104 -1.95933 H 2.09910 -3.11015 -1.56766 H 0.91027 -1.99817 -2.26383 C 1.73287 2.33436 -0.50658 H 1.36467 2.32191 -1.54506 H 0.99191 2.85065 0.12093 H 2.65059 2.94684 -0.49478 C 0.16759 -2.71817 0.16723 H -0.20643 -2.67137 1.20100 H -0.68184 -2.64949 -0.52727 H 0.59824 -3.72627 0.03498 DA-/Bu2 So/S1 conical intersection Symmetry: C ₁ C 1.41885083 -0.65243331 0.78299106 C 0.15591783 0.13747850 1.14791833 C 0.1604554 0.19778706 -1.10671062 C 1.49360801 -0.21292932 -0.61663161 C -0.86560939 -0.18777225 -0.01124623 C 0.76359554 1.45871793 0.74649860 C 0.91913620 1.44211319 -0.64860526 H -0.18300684 0.06949570 2.16817104 H -0.05757905 0.11347023 -2.15540411 C 1.35617526 2.42915488 1.70023640 H 0.74677496 2.53037982 2.5889871 H 2.31977049 2.03031638 2.01422159 H 1.51532899 3.39938842 1.24937742 C 2.53708258 -0.66589039 -2.3584521 H 0.76359554 1.45871793 0.74649860 C 0.91913620 1.44211319 -0.64860526 H -0.18300684 0.06949570 2.16817104 H -0.05757905 0.11347023 -2.15540411 C 1.35617526 2.42915488 1.70023640 H 0.74677496 2.53037982 2.5889871 H 2.31977049 2.03031638 2.01422159 H 1.51532899 3.39938842 1.24937742 C 2.53708258 -0.66589064 1.63180941 N 3.42978095 -0.6891230 2.35220342 C 2.54850247 -0.46147429 -1.52173824 N 3.43283586 -0.64028930 -2.25581888 C 1.49738488 2.50771519 -1.53649165 H 2.35845258 2.98384684 -1.08218075 H 1.82364116 2.08405755 -2.47864121 H 0.7633954 -2.68393036 -0.27361894 H 0.7630954 -2.68393036 -0.27361894 H 0.7630954 -2.68393036 -0.27361894 H 0.75149012 -3.65461747 -0.87009219 C -1.39973980 -2.36496290 1.32069773	Η	-0.75444	2.63743	2.64660
C 2.09503 0.91361 0.01437 C 2.58697 1.11954 1.46952 H 2.88805 0.18868 1.96796 H 3.46152 1.79207 1.46652 H 1.81138 1.60219 2.08647 C 3.31114 0.53387 -0.87223 H 4.08378 1.31013 -0.74067 H 3.78072 -0.42623 -0.62859 H 3.04327 0.52912 -1.94138 C 2.39044 -2.06088 0.91219 H 2.61181 -3.13798 0.82582 H 3.34040 -1.52605 0.79221 H 2.02847 -1.88803 1.94006 C 1.75779 -2.06121 -1.56766 H 0.91027 -1.99817 -2.26383 C 1.73287 2.33436 -0.50658 H 1.36467 2.32191 -1.56766 H 0.99107 -1.99817 -2.26383 C 1.73287 2.33436 -0.50658 H 1.36467 2.32191 -1.54506 H 0.99191 2.85065 0.12093 H 2.65059 2.94684 -0.49478 C 0.16759 -2.71817 0.16723 H -0.20643 -2.67137 1.20100 H -0.68184 -2.64949 -0.52727 H 0.59824 -3.72627 0.03498 DA- <i>f</i> Bu2 So/S ₁ conical intersection Symmetry: C ₁ C 1.41885083 -0.65243331 0.78299106 C 0.15591783 0.13747850 1.14791833 C 0.16064554 0.19778706 -1.10671062 C 1.49360801 -0.21292932 -0.61663161 C -0.86560939 -0.18777225 -0.01124623 C 0.76359554 1.45871793 0.74649860 C 0.91913620 1.44211319 -0.64860526 H -0.18300684 0.06949570 2.16817104 H -0.05757905 0.11347023 -2.15540411 C 1.35617526 2.42915488 1.70023640 C 0.91913620 1.44211319 -0.64860526 H -0.18300684 0.06949570 2.16817104 H -0.05757905 0.11347023 -2.5540411 C 1.35617526 2.42915488 1.70023640 C 0.91913620 1.44211319 -0.64860526 H -0.18300684 0.06949570 2.16817104 H -0.05757905 0.11347023 -2.5540411 C 1.35617526 2.42915488 1.70023640 C 0.91913620 1.44211319 -0.64860526 H -0.18300684 0.06949570 2.16817104 H 0.07637995 0.11347023 -2.5540411 C 1.35617526 2.42915488 1.70023640 C 2.53708258 -0.66589064 1.63180941 N 3.42978095 -0.68912390 2.35220342 C 2.53845258 2.98384684 -1.08218075 H 1.82364116 2.08405755 -2.47864121 H 0.76339548 3.27781321 -1.76302706 C -1.23857581 -1.76853883 -0.09411689 C -0.16746658 -2.64221567 -0.80542598 H 0.01734806 -2.31872512 -1.82478651 H 0.7630954 -2.68393036 -0.27361894 H -0.55149012 -3.65461747 -0.87009219 C -1.39973980 -2.36496290 1.32069773	С	1.30013	-1.69117	-0.12459
C 2.58697 1.11954 1.46952 H 2.88805 0.18868 1.96796 H 3.46152 1.79207 1.46652 H 1.81138 1.60219 2.08647 C 3.31114 0.53387 -0.87223 H 4.08378 1.31013 -0.74067 H 3.78072 -0.42623 -0.62859 H 3.04327 0.52912 -1.94138 C 2.39044 -2.06088 0.91219 H 2.61181 -3.13798 0.82582 H 3.34040 -1.52605 0.79221 H 2.02847 -1.88803 1.94006 C 1.75779 -2.06121 -1.56098 H 2.57418 -1.45104 -1.95933 H 2.09910 -3.11015 -1.56766 H 0.91027 -1.99817 -2.26383 C 1.73287 2.33436 -0.50658 H 1.36467 2.32191 -1.54506 H 0.99191 2.85065 0.12093 H 2.65059 2.94684 -0.49478 C 0.16759 -2.71817 0.16723 H -0.20643 -2.67137 1.20100 H -0.68184 -2.64949 -0.52727 H 0.59824 -3.72627 0.03498 DA- <i>f</i> Bu2 So/S ₁ conical intersection Symmetry: C ₁ C 1.41885083 -0.65243331 0.78299106 C 0.15591783 0.13747850 1.14791833 C 0.16064554 0.19778706 -1.10671062 C 1.49360801 -0.21292932 -0.61663161 C -0.85560939 -0.18777225 -0.01124623 C 0.76359554 1.45871793 0.78499106 C 0.15591783 0.13747850 1.14791833 C 0.16064554 0.0977706 -1.10671062 C 1.49360801 -0.21292932 -0.61663161 C -0.85560939 -0.18777225 -0.01124623 C 0.76359554 1.45871793 0.74649860 C 0.91913620 1.44211319 -0.64860526 H -0.18300684 0.06949570 2.16187104 H -0.05757905 0.11347023 -2.15540411 C 1.35617526 2.42915488 1.70023640 H 0.74677496 2.53037982 2.58898871 H 2.31977049 2.03031638 2.01422159 H 1.51532899 3.39938842 1.24937742 C 2.53708258 -0.668912300 2.35220342 C 2.58450247 -0.46147429 -1.52173824 N 3.43283586 -0.64028930 -2.25581888 C 1.49738488 2.50771519 -1.53649165 H 2.35845258 2.98346484 -1.08218075 H 1.82364116 2.0840575 -2.47864121 H 0.76359558 1.2781321 -1.76302706 C -2.12926965 0.81301647 0.02896278 C -1.23857581 -1.7685383 -0.09411689 C -0.16746658 -2.64221567 -0.80542598 H 0.01734806 -2.31872512 -1.82478651 H 0.7634954 -2.6849303 -2.25581884 C 1.497394806 -2.31872512 -1.82478651 H 0.7634954 -2.6849303 -2.25581894 H 0.01734806 -2.31872512 -1.82478651 H 0.7634954 -2.64221567 -0.80542598 H 0.01734806 -2.31872512 -1.82478651 H 0.7634954 -	С	2.09503	0.91361	0.01437
H 2.88805 0.18868 1.96796 H 3.46152 1.79207 1.46652 H 1.81138 1.60219 2.08647 C 3.31114 0.53387 -0.87223 H 4.08378 1.31013 -0.74067 H 3.78072 -0.42623 -0.62859 H 3.04327 0.52912 -1.94138 C 2.39044 -2.06088 0.91219 H 2.61181 -3.13798 0.82582 H 3.34040 -1.52605 0.79221 H 2.02847 -1.88803 1.94006 C 1.75779 -2.06121 -1.56098 H 2.07418 -1.45104 -1.95933 H 2.09910 -3.11015 -1.56766 H 0.91027 -1.99817 -2.26383 C 1.73287 2.33436 -0.50658 H 1.36467 2.32191 -1.54506 H 0.65159 2.71817 0.16723 H -0.20643 -2.67137 1.20100 <td< td=""><td>С</td><td>2.58697</td><td>1.11954</td><td>1.46952</td></td<>	С	2.58697	1.11954	1.46952
H 3.46152 1.79207 1.46652 H 1.81138 1.60219 2.08647 C 3.31114 0.53387 -0.87223 H 4.08378 1.31013 -0.74067 H 3.78072 -0.42623 -0.62859 H 3.04327 0.52912 -1.94138 C 2.39044 -2.06088 0.91219 H 2.61181 -3.13798 0.82582 H 3.34040 -1.52605 0.79221 H 2.02847 -1.88803 1.94006 C 1.75779 -2.06121 -1.56098 H 2.57418 -1.45104 -1.95933 H 2.09910 -3.11015 -1.56766 H 0.91027 -1.99817 -2.26383 C 1.73287 2.33436 -0.50658 H 1.36467 2.32191 -1.54506 H 0.99191 2.85065 0.12093 H 2.65059 2.94684 -0.49478 C 0.16759 -2.71817 0.16723 H -0.20643 -2.67137 1.20100 H -0.68184 -2.64949 -0.52727 H 0.59824 -3.72627 0.03498 DA-fBu So/S1 conical intersection Symmetry: C ₁ C 1.41885083 -0.65243331 0.78299106 C 0.15591783 0.13747850 1.14791833 C 0.16064554 0.19778706 -1.10671062 C 1.49360801 -0.21292932 -0.61663161 C -0.86560939 -0.18777225 -0.01124623 C 0.76359554 1.45871793 0.74649860 C 0.91913620 1.44211319 -0.64860526 H -0.18300684 0.06949570 2.16817104 H -0.05757905 0.11347023 -2.15540411 C 1.35617526 2.42915488 1.70023640 H 0.74677496 2.53037982 2.58898871 H 2.31977049 2.03031638 2.01422159 H 1.51532899 3.3993842 1.24937742 C 2.53708258 -0.66589064 1.63180941 N 3.42978095 -0.68912390 -2.25581888 C 1.49738488 2.50771519 -1.53649165 H 2.3597581 -1.76853883 -0.09411689 C 2.55450247 -0.46147429 -1.52173824 N 3.43283586 -0.64028930 -2.25581888 C 1.49738488 2.50771519 -1.53649165 H 2.35845258 2.96831647 -0.02896278 C -1.23857581 -1.76853883 -0.09411689 C -0.16746658 -2.64221567 -0.80542598 H 0.01734806 -2.31872512 -1.76302706 C -2.12926965 0.81301647 0.02896278 C -1.23857581 -1.76853883 -0.09411689 C -0.16746658 -2.64221567 -0.80542598 H 0.01734806 -2.31872512 -1.82478651 H 0.76630954 -2.6893036 -0.27361894 H -0.55149012 -3.65461747 -0.87009219 C -1.339773980 -2.36496290 1.32069773	Η	2.88805	0.18868	1.96796
H1.811381.602192.08647C 3.31114 0.53387-0.87223H4.083781.31013-0.74067H 3.78072 -0.42623-0.62859H 3.04327 0.52912-1.94138C 2.39044 -2.060880.91219H2.61181-3.137980.82582H 3.34040 -1.526050.79221H2.02847-1.888031.94006C1.75779-2.06121-1.56098H2.57418-1.45104-1.95933H2.09910-3.11015-1.56766H0.91027-1.99817-2.26383C1.732872.33436-0.50658H1.364672.32191-1.54506H0.991912.850650.12093H2.650592.94684-0.49478C0.16759-2.718170.16723H-0.20643-2.671371.20100H-0.68184-2.64949-0.52727H0.59824-3.726270.03498DA-fBuzSo/S1 conical intersectionSymmetry: CiC1.4185083C1.49360801-0.21292932-0.6163161C-0.86560939-0.1877725-0.01124623C0.763595541.458717930.74649860C0.919136201.44211319-0.64860526H-0.183006840.069495702.16817104H-0.057579050.11347023	Н	3.46152	1.79207	1.46652
C 3.31114 0.53387 -0.87223 H 4.08378 1.31013 -0.74067 H 3.78072 -0.42623 -0.62859 H 3.04327 0.52912 -1.94138 C 2.39044 -2.06088 0.91219 H 2.61181 -3.13798 0.82582 H 3.34040 -1.52605 0.79221 H 2.02847 -1.88803 1.94006 C 1.75779 -2.06121 -1.56098 H 2.57418 -1.45104 -1.95933 H 2.09910 -3.11015 -1.56766 H 0.91027 -1.99817 -2.26383 C 1.73287 2.33436 -0.50658 H 1.36467 2.32191 -1.54506 H 0.99191 2.85065 0.12093 H 2.65059 2.94684 -0.49478 C 0.16759 -2.71817 0.16723 H -0.20643 -2.67137 1.20100 H -0.68184 -2.64949 -0.52727 H 0.59824 -3.72627 0.03498 DA-7Bu So/S1 conical intersection Symmetry: C_1 C 1.41885083 -0.65243331 0.78299106 C 0.15591783 0.13747850 1.14791833 C 0.1604554 0.19778706 -1.10671062 C 1.49360801 -0.21292932 -0.6163161 C -0.86560939 -0.18777225 -0.01124623 C 0.76359554 1.45871793 0.74649860 C 0.91913620 1.44211319 -0.64860526 H -0.18300684 0.06949570 2.16817104 H -0.05757905 0.11347023 -2.15540411 C 1.35617526 2.42915488 1.70023640 H 0.74677496 2.53037982 2.58898871 H 2.31977049 2.0331638 2.01422159 H 1.51532899 3.39938842 1.24937742 C 2.53708258 -0.66589064 1.63180941 N 3.42978095 -0.68912390 2.35220342 C 2.58450247 -0.46147429 -1.52173824 N 3.43283586 -0.66589064 1.63180941 N 3.42978095 -0.68912390 2.3520342 C 2.58450247 -0.46147429 -1.52173824 N 3.43283586 -0.64028930 -2.25581888 C 1.49738488 2.50771519 -1.53649165 H 2.35845258 2.9838464 -1.08218075 H 1.82364116 2.98405755 -2.47864121 H 0.76359588 3.27781321 -1.76302706 C -2.12926965 0.81301647 0.02896278 C -1.23857581 -1.76853883 -0.09411689 C -0.16746658 -2.64221567 -0.80542598 H 0.01734806 -2.31872512 -1.82478651 H 0.7630954 -2.68393036 -0.27361894 H -0.55149012 -3.65461747 -0.87009219 C -1.399773980 -2.36496290 1.32069773	Η	1.81138	1.60219	2.08647
H 4.08378 1.31013 -0.74067 H 3.78072 -0.42623 -0.62859 H 3.04327 0.52912 -1.94138 C 2.39044 -2.06088 0.91219 H 2.61181 -3.13798 0.82582 H 3.34040 -1.52605 0.79221 H 2.02847 -1.88803 1.94006 C 1.75779 -2.06121 -1.56098 H 2.57418 -1.45104 -1.95933 H 2.09910 -3.11015 -1.56766 H 0.91027 -1.99817 -2.26383 C 1.73287 2.33436 -0.50658 H 1.36467 2.32191 -1.54506 H 0.99191 2.85065 0.12093 H 2.65059 2.94684 -0.49478 C 0.16759 -2.71817 0.16723 H -0.20643 -2.67137 1.20100 H -0.68184 -2.64949 -0.52727 H 0.59824 -3.72627 0.03498 DA-tBu2 So/S1 conical intersection Symmetry: C_1 C 1.41885083 -0.65243331 0.78299106 C 0.15591783 0.13747850 1.14791833 C 0.16064554 0.19778706 -1.10671062 C 1.49360801 -0.21292932 -0.61663161 C -0.86560939 -0.18777225 -0.01124623 C 0.76359554 1.45871793 0.74649860 C 0.91913620 1.44211319 -0.64860526 H -0.18300684 0.06949570 2.16817104 H -0.05757905 0.11347023 -2.15540411 C 1.35617526 2.42915488 1.70023640 H 0.74677496 2.53037982 2.58898871 H 2.31977049 2.03031638 2.01422159 H 1.51532899 3.3993842 1.24937742 C 2.53708258 -0.66589064 1.63180941 N 3.42978095 -0.68912390 2.35220342 C 2.58450247 -0.46147429 -1.52173824 N 3.4328356 -0.66028930 -2.25581888 C 1.49738488 2.50771519 -1.53649165 H 0.76359588 3.27781321 -1.76302706 C -2.12926965 0.81301647 0.02896278 C -1.23857581 -1.76853883 -0.09411689 C -0.16746658 -2.64221567 -0.80542598 H 0.76630554 -2.63393036 -0.27361894 H 0.76630554 -2.63393036 -0.27361894 H 0.76630554 -2.63393036 -0.27361894 H 0.76630554 -2.63393036 -0.27361894 H 0.7663054 -2.63496290 1.32069773	C	3.31114	0.53387	-0.87223
H 3.78072 -0.42623 -0.62859 H 3.04327 0.52912 -1.94138 C 2.39044 -2.06088 0.91219 H 2.61181 -3.13798 0.82582 H 3.34040 -1.52605 0.79221 H 2.02847 -1.88803 1.94006 C 1.75779 -2.06121 -1.56098 H 2.57418 -1.45104 -1.95933 H 2.09910 -3.11015 -1.56766 H 0.91027 -1.99817 -2.26383 C 1.73287 2.33436 -0.50658 H 1.36467 2.32191 -1.54506 H 0.99191 2.85065 0.12093 H 2.65059 2.94684 -0.49478 C 0.16759 -2.71817 0.16723 H -0.20643 -2.67137 1.20100 H -0.68184 -2.64949 -0.52727 H 0.59824 -3.72627 0.03498 DA-<i>t</i>Bu2 So/S1 conical intersection Symmetry: C_1 C 1.41885083 -0.65243331 0.78299106 C 0.15591783 0.13747850 1.14791833 C 0.16064554 0.19778706 -1.10671062 C 1.49360801 -0.21292932 -0.61663161 C 0.91913620 1.44211319 -0.64806026 H -0.18300684 0.06949570 2.16817104 H -0.05757905 0.11347023 -2.15540411 C 1.35617526 2.42915488 1.70023640 H 0.74677496 2.53037982 2.58898871 H 2.31977049 2.03031638 2.01422159 H 1.51532899 3.39938842 1.24937742 C 2.53708258 -0.66589064 1.63180941 N 3.42978095 -0.64028930 -2.25581888 C 1.49738488 2.50771519 -1.53649165 H 0.73459588 3.27781321 -1.76302706 C -2.12926965 0.81301647 0.02896278 C -1.23857581 -1.76853883 -0.09411689 C -0.16746658 -2.64221567 -0.80542598 H 0.076359588 3.27781321 -1.76302706 C -2.12926965 0.81301647 0.02896278 C -1.23857581 -1.76853883 -0.09411689 C -0.16746658 -2.64221567 -0.80542598 H 0.07734806 -2.31872512 -1.82478651 H 0.76630954 -2.6393036 -0.27361894 H -0.55149012 -3.65461747 -0.87009219	H	4.08378	1.31013	-0.74067
H 3.04327 0.52912 -1.94138 C 2.39044 -2.06088 0.91219 H 2.61181 -3.13798 0.82582 H 3.34040 -1.52605 0.79221 H 2.02847 -1.88803 1.94006 C 1.75779 -2.06121 -1.56098 H 2.57418 -1.45104 -1.95933 H 2.09910 -3.11015 -1.56766 H 0.91027 -1.99817 -2.26383 C 1.73287 2.33436 -0.50658 H 1.36467 2.32191 -1.54506 H 0.99191 2.85065 0.12093 H 2.65059 2.94684 -0.49478 C 0.16759 -2.71817 0.16723 H -0.20643 -2.67137 1.20100 H -0.68184 -2.64949 -0.52727 H 0.59824 -3.72627 0.03498 DA-tBuzSo/S1 conical intersectionSymmetry: C_1 C 1.4885083 C 0.1604554 0.19778706 -1.10671062 C 1.49360801 -0.21292932 -0.6163161 C 0.86560939 -0.1877225 -0.01124623 C 0.76359554 1.45871793 0.74649860 C 0.91913620 1.44211319 -0.64860526 H -0.18300684 0.06949570 2.16817104 H -0.0577905 0.11347023 -2.15840411 C 1.35617526 2.42915488	H	3.78072	-0.42623	-0.62859
C 2.39044 -2.06088 0.91219 H 2.61181 -3.13798 0.82582 H 3.34040 -1.52605 0.79221 H 2.02847 -1.88803 1.94006 C 1.75779 -2.06121 -1.56098 H 2.57418 -1.45104 -1.95933 H 2.09910 -3.11015 -1.56766 H 0.91027 -1.99817 -2.26383 C 1.73287 2.33436 -0.50658 H 1.36467 2.32191 -1.54506 H 0.99191 2.85065 0.12093 H 2.65059 2.94684 -0.49478 C 0.16759 -2.71817 0.16723 H -0.20643 -2.67137 1.20100 H -0.68184 -2.64949 -0.52727 H 0.59824 -3.72627 0.03498 DA-tBu2 S $_{0}$ /S1 conical intersection Symmetry: C1 C 1.41885083 -0.65243331 0.78299106 C 0.15591783 0.13747850 1.14791833 C 0.16064554 0.19778706 -1.10671062 C 1.49360801 -0.21292932 -0.61663161 C -0.86560939 -0.18777225 -0.01124623 C 0.76359554 1.45871793 0.74649860 C 0.91913620 1.44211319 -0.64860526 H -0.18300684 0.06949570 2.16817104 H -0.05757905 0.11347023 -2.15540411 C 1.35617526 2.42915488 1.70023640 H 0.74677496 2.53037982 2.58898871 H 2.31977049 2.03031638 2.01422159 H 1.51532899 3.39938424 1.24937742 C 2.53708258 -0.66589064 1.63180941 N 3.42978095 -0.68912390 2.35220342 C 2.58450247 -0.46147429 -1.52173824 N 3.43283586 -0.64028930 -2.25581888 C 1.49738488 2.50771519 -1.53649165 H 2.35845258 2.98384684 -1.08218075 H 1.82364116 2.08405755 -2.47864121 H 0.76359588 3.27781321 -1.76302706 C -2.12926965 0.81301647 0.02896278 C -1.23857581 -1.76853883 -0.09411689 C -0.16746658 -2.64221567 -0.80542598 H 0.01734806 -2.31872512 -1.82478651 H 0.76630954 -2.6839303 6-0.27361894 H 0.76630954 -2.64321567 -0.80542598 H 0.01734806 -2.31872512 -1.82478651 H 0.76630954 -2.6439303 6-0.27361894 H -0.55149012 -3.65461747 -0.87009219 C -1.23857581 -1.76853883 -0.09411689 C -0.16746658 -2.64221567 -0.80542598 H 0.01734806 -2.31872512 -1.82478651 H 0.76630954 -2.64393036 -0.27361894 H -0.55149012 -3.65461747 -0.87009219	Н	3.04327	0.52912	-1.94138
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C	2.39044	-2.06088	0.91219
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Н	2.61181	-3.13/98	0.82582
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H	3.34040	-1.52605	0.79221
C $1.757/9$ -2.06121 -1.56098 H 2.57418 -1.45104 -1.95933 H 2.09910 -3.11015 -1.56766 H 0.91027 -1.99817 -2.26383 C 1.73287 2.33436 -0.50658 H 1.36467 2.32191 -1.54506 H 0.99191 2.85065 0.12093 H 2.65059 2.94684 -0.49478 C 0.16759 -2.71817 0.16723 H -0.20643 -2.67137 1.20100 H -0.68184 -2.64949 -0.52727 H 0.59824 -3.72627 0.03498 DA-rBu2 S ₀ /S ₁ conical intersection Symmetry: C ₁ C 1.41885083 -0.65243331 0.78299106 C 0.15591783 0.13747850 1.14791833 C 0.16064554 0.19778706 -1.10671062 C 1.49360801 -0.21292932 -0.61663161 C -0.86560939 -0.18777225 -0.01124623 C 0.76359554 1.45871793 0.74649860 C 0.91913620 1.44211319 -0.64860526 H -0.18300684 0.06949570 2.16817104 H -0.05757905 0.11347023 -2.15540411 C 1.35617526 2.42915488 1.70023640 H 0.74677496 2.53037982 2.58898871 H 2.31977049 2.03031638 2.01422159 H 1.51532899 3.39938842 1.24937742 C 2.53708258 -0.66589064 1.63180941 N 3.42978095 -0.68912390 2.35220342 C 2.58450247 -0.46147429 -1.52173824 N 3.43283586 -0.64028930 -2.25581888 C 1.49738488 2.50771519 -1.53649165 H 2.35845258 2.98384684 -1.08218075 H 1.82364116 2.08405755 -2.47864121 H 0.76359588 3.27781321 -1.76302706 C -1.23857581 -1.76853883 -0.09411689 C -0.16746658 -2.64221567 -0.80542598 H 0.01734806 -2.31872512 -1.82478651 H 0.76630954 -2.68393036 -0.27361894 H -0.55149012 -3.65461747 -0.87009219 C -1.39973980 -2.36496290 1.32069773	H	2.02847	-1.88803	1.94006
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C	1./5//9	-2.06121	-1.56098
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H	2.57418	-1.45104	-1.95933
$\begin{array}{ccccccc} \mathbf{H} & 0.91027 & -1.99817 & -2.20383 \\ \mathbf{C} & 1.73287 & 2.33436 & -0.50658 \\ \mathbf{H} & 1.36467 & 2.32191 & -1.54506 \\ \mathbf{H} & 0.99191 & 2.85065 & 0.12093 \\ \mathbf{H} & 2.65059 & 2.94684 & -0.49478 \\ \mathbf{C} & 0.16759 & -2.71817 & 0.16723 \\ \mathbf{H} & -0.20643 & -2.67137 & 1.20100 \\ \mathbf{H} & -0.68184 & -2.64949 & -0.52727 \\ \mathbf{H} & 0.59824 & -3.72627 & 0.03498 \\ \end{array}$	H	2.09910	-3.11015	-1.50/00
C 1.75267 2.33436 -0.30638 H 1.36467 2.32191 -1.54506 H 0.99191 2.85065 0.12093 H 2.65059 2.94684 -0.49478 C 0.16759 -2.71817 0.16723 H -0.20643 -2.67137 1.20100 H -0.68184 -2.64949 -0.52727 H 0.59824 -3.72627 0.03498 DA-fBu So/S ₁ conical intersection Symmetry: C ₁ C 1.41885083 -0.65243331 0.78299106 C 0.15591783 0.13747850 1.14791833 C 0.16064554 0.19778706 -1.10671062 C 1.49360801 -0.21292932 -0.61663161 C -0.86560939 -0.18777225 -0.01124623 C 0.76359554 1.45871793 0.74649860 C 0.91913620 1.44211319 -0.64860526 H -0.18300684 0.06949570 2.16817104 H -0.05757905 0.11347023 -2.15540411 C 1.35617526 2.42915488 1.70023640 H 0.74677496 2.53037982 2.58898871 H 2.31977049 2.03031638 2.01422159 H 1.51532899 3.39938842 1.24937742 C 2.53708258 -0.66589064 1.63180941 N 3.42978095 -0.68912390 2.35220342 C 2.58450247 -0.46147429 -1.52173824 N 3.43283586 -0.64028930 -2.255818888 C 1.49738488 2.50771519 -1.53649165 H 2.35845258 2.98384684 -1.08218075 H 1.82364116 2.08405755 -2.47864121 H 0.76359588 3.27781321 -1.76302706 C -2.12926965 0.81301647 0.02896278 C -1.23857581 -1.76853883 -0.09411689 C -0.16746658 -2.64221567 -0.80542598 H 0.01734806 -2.31872512 -1.82478651 H 0.76630954 -2.68393036 -0.27361894 H -0.55149012 -3.65461747 -0.87009219	н С	0.91027	-1.99817	-2.20383
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	U U	1./328/	2.33430	-0.50658
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	п u	1.30407	2.52191	-1.34300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	п u	0.99191	2.83003	0.12093
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	П С	2.05059	2.94084	-0.49478
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	н	-0.20643	-2.71817	1 20100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	н	-0.20045	-2.6/137	-0 52727
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H	0 59824	-2.04949	0.03/08
$\begin{array}{llllllllllllllllllllllllllllllllllll$	11	0.57624	-3.72027	0.03470
$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Symmetry: C_1 C1.41885083-0.652433310.78299106C0.155917830.137478501.14791833C0.160645540.19778706-1.10671062C1.49360801-0.21292932-0.61663161C-0.86560939-0.18777225-0.01124623C0.763595541.458717930.74649860C0.919136201.44211319-0.64860526H-0.183006840.069495702.16817104H-0.057579050.11347023-2.15540411C1.356175262.429154881.70023640H0.746774962.530379822.58898871H2.319770492.030316382.01422159H1.515328993.399388421.24937742C2.53708258-0.665890641.63180941N3.42978095-0.689123902.35220342C2.58450247-0.46147429-1.52173824N3.43283586-0.64028930-2.25581888C1.497384882.50771519-1.53649165H2.358452582.98384684-1.08218075H1.823641162.08405755-2.47864121H0.763595883.27781321-1.76302706C-2.129269650.813016470.02896278C-1.23857581-1.76853883-0.09411689C-0.16746658-2.64221567-0.80542598H0.01734806-2.31872512-1.82478651H0.76630954-2.68393036-0.27361894<	DA	- <i>t</i> Bu ₂		
C1.41885083-0.652433310.78299106C0.155917830.137478501.14791833C0.160645540.19778706-1.10671062C1.49360801-0.21292932-0.61663161C-0.86560939-0.18777225-0.01124623C0.763595541.458717930.74649860C0.919136201.44211319-0.64860526H-0.183006840.069495702.16817104H-0.057579050.11347023-2.15540411C1.356175262.429154881.70023640H0.746774962.530379822.58898871H2.319770492.030316382.01422159H1.515328993.399388421.24937742C2.53708258-0.665890641.63180941N3.42978095-0.689123902.35220342C2.58450247-0.46147429-1.52173824N3.43283586-0.64028930-2.25581888C1.497384882.50771519-1.53649165H2.358452582.98384684-1.08218075H1.823641162.08405755-2.47864121H0.763595883.27781321-1.76302706C-2.129269650.813016470.02896278C-1.23857581-1.76853883-0.09411689C-0.16746658-2.64221567-0.80542598H0.01734806-2.31872512-1.82478651H0.76630954-2.68393036-0.27361894H-0.55149012<	DA S ₀ /	- <i>t</i> Bu ₂ S ₁ conical inter	section	
C0.155917830.137478501.14791833C0.160645540.19778706-1.10671062C1.49360801-0.21292932-0.61663161C-0.86560939-0.18777225-0.01124623C0.763595541.458717930.74649860C0.919136201.44211319-0.64860526H-0.183006840.069495702.16817104H-0.057579050.11347023-2.15540411C1.356175262.429154881.70023640H0.746774962.530379822.58898871H2.319770492.030316382.01422159H1.515328993.399388421.24937742C2.53708258-0.665890641.63180941N3.42978095-0.689123902.35220342C2.58450247-0.46147429-1.52173824N3.43283586-0.64028930-2.25581888C1.497384882.50771519-1.53649165H2.358452582.98384684-1.08218075H1.823641162.08405755-2.47864121H0.763595883.27781321-1.76302706C-2.129269650.813016470.02896278C-1.23857581-1.76853883-0.09411689C-0.16746658-2.64221567-0.80542598H0.01734806-2.31872512-1.82478651H0.76630954-2.68393036-0.27361894H-0.55149012-3.65461747-0.87009219C-1.3997398	DA S ₀ /	- <i>t</i> Bu ₂ S ₁ conical inter mmetry: C ₁	section	
C0.160645540.19778706-1.10671062C1.49360801-0.21292932-0.61663161C-0.86560939-0.18777225-0.01124623C0.763595541.458717930.74649860C0.919136201.44211319-0.64860526H-0.183006840.069495702.16817104H-0.057579050.11347023-2.15540411C1.356175262.429154881.70023640H0.746774962.530379822.58898871H2.319770492.030316382.01422159H1.515328993.399388421.24937742C2.53708258-0.665890641.63180941N3.42978095-0.689123902.35220342C2.58450247-0.46147429-1.52173824N3.43283586-0.64028930-2.25581888C1.497384882.50771519-1.53649165H2.358452582.98384684-1.08218075H1.823641162.08405755-2.47864121H0.763595883.27781321-1.76302706C-2.129269650.813016470.02896278C-1.23857581-1.76853883-0.09411689C-0.16746658-2.64221567-0.80542598H0.01734806-2.31872512-1.82478651H0.76630954-2.68393036-0.27361894H-0.55149012-3.65461747-0.87009219C-1.39973980-2.364962901.32069773	DA S ₀ / Syl C	$A-tBu_2$ S ₁ conical inter mmetry: C ₁ 1.41885083	section -0.65243331	0.78299106
$\begin{array}{llllllllllllllllllllllllllllllllllll$	DA So/ Syl C C	A- <i>t</i>Bu₂ S ₁ conical inter mmetry: <i>C</i> ₁ 1.41885083 0.15591783	section -0.65243331 0.13747850	0.78299106 1.14791833
$\begin{array}{llllllllllllllllllllllllllllllllllll$	DA S ₀ // Syn C C C	A- fBu ₂ S ₁ conical inter mmetry: C ₁ 1.41885083 0.15591783 0.16064554	section -0.65243331 0.13747850 0.19778706	0.78299106 1.14791833 -1.10671062
C0.763595541.458717930.74649860C0.919136201.44211319-0.64860526H-0.183006840.069495702.16817104H-0.057579050.11347023-2.15540411C1.356175262.429154881.70023640H0.746774962.530379822.58898871H2.319770492.030316382.01422159H1.515328993.399388421.24937742C2.53708258-0.665890641.63180941N3.42978095-0.689123902.35220342C2.58450247-0.46147429-1.52173824N3.43283586-0.64028930-2.25581888C1.497384882.50771519-1.53649165H2.358452582.98384684-1.08218075H1.823641162.08405755-2.47864121H0.763595883.27781321-1.76302706C-2.129269650.813016470.02896278C-1.23857581-1.76853883-0.09411689C-0.16746658-2.64221567-0.80542598H0.01734806-2.31872512-1.82478651H0.76630954-2.68393036-0.27361894H-0.55149012-3.65461747-0.87009219C-1.39973980-2.364962901.32069773	DA S ₀ // Syn C C C C	A- fBu ₂ S ₁ conical inter mmetry: C ₁ 1.41885083 0.15591783 0.16064554 1.49360801	section -0.65243331 0.13747850 0.19778706 -0.21292932	0.78299106 1.14791833 -1.10671062 -0.61663161
C0.919136201.44211319-0.64860526H-0.183006840.069495702.16817104H-0.057579050.11347023-2.15540411C1.356175262.429154881.70023640H0.746774962.530379822.58898871H2.319770492.030316382.01422159H1.515328993.399388421.24937742C2.53708258-0.665890641.63180941N3.42978095-0.689123902.35220342C2.58450247-0.46147429-1.52173824N3.43283586-0.64028930-2.25581888C1.497384882.50771519-1.53649165H2.358452582.98384684-1.08218075H1.823641162.08405755-2.47864121H0.763595883.27781321-1.76302706C-2.129269650.813016470.02896278C-1.23857581-1.76853883-0.09411689C-0.16746658-2.64221567-0.80542598H0.01734806-2.31872512-1.82478651H0.76630954-2.68393036-0.27361894H-0.55149012-3.65461747-0.87009219C-1.39973980-2.364962901.32069773	DA S ₀ // Syl C C C C C C	A- fBu ₂ S ₁ conical inter mmetry: C ₁ 1.41885083 0.15591783 0.16064554 1.49360801 -0.86560939	section -0.65243331 0.13747850 0.19778706 -0.21292932 -0.18777225	0.78299106 1.14791833 -1.10671062 -0.61663161 -0.01124623
H-0.183006840.069495702.16817104H-0.057579050.11347023-2.15540411C1.356175262.429154881.70023640H0.746774962.530379822.58898871H2.319770492.030316382.01422159H1.515328993.399388421.24937742C2.53708258-0.665890641.63180941N3.42978095-0.689123902.35220342C2.58450247-0.46147429-1.52173824N3.43283586-0.64028930-2.25581888C1.497384882.50771519-1.53649165H2.358452582.98384684-1.08218075H1.823641162.08405755-2.47864121H0.763595883.27781321-1.76302706C-2.129269650.813016470.02896278C-1.23857581-1.76853883-0.09411689C-0.16746658-2.64221567-0.80542598H0.01734806-2.31872512-1.82478651H0.76630954-2.68393036-0.27361894H-0.55149012-3.65461747-0.87009219C-1.39973980-2.364962901.32069773	DA S ₀ // Syr C C C C C C C C	A- fBu ₂ S ₁ conical inter mmetry: C ₁ 1.41885083 0.15591783 0.16064554 1.49360801 -0.86560939 0.76359554	section -0.65243331 0.13747850 0.19778706 -0.21292932 -0.18777225 1.45871793	0.78299106 1.14791833 -1.10671062 -0.61663161 -0.01124623 0.74649860
H-0.057579050.11347023-2.15540411C1.356175262.429154881.70023640H0.746774962.530379822.58898871H2.319770492.030316382.01422159H1.515328993.399388421.24937742C2.53708258-0.665890641.63180941N3.42978095-0.689123902.35220342C2.58450247-0.46147429-1.52173824N3.43283586-0.64028930-2.25581888C1.497384882.50771519-1.53649165H2.358452582.98384684-1.08218075H1.823641162.08405755-2.47864121H0.763595883.27781321-1.76302706C-2.129269650.813016470.02896278C-1.23857581-1.76853883-0.09411689C-0.16746658-2.64221567-0.80542598H0.01734806-2.31872512-1.82478651H0.76630954-2.68393036-0.27361894H-0.55149012-3.65461747-0.87009219C-1.39973980-2.364962901.32069773	DA S ₀ // Syr C C C C C C C C C C	A- fBu ₂ S ₁ conical inter mmetry: C ₁ 1.41885083 0.15591783 0.16064554 1.49360801 -0.86560939 0.76359554 0.91913620	section -0.65243331 0.13747850 0.19778706 -0.21292932 -0.18777225 1.45871793 1.44211319	0.78299106 1.14791833 -1.10671062 -0.61663161 -0.01124623 0.74649860 -0.64860526
C1.356175262.429154881.70023640H0.746774962.530379822.58898871H2.319770492.030316382.01422159H1.515328993.399388421.24937742C2.53708258-0.665890641.63180941N3.42978095-0.6689123902.35220342C2.58450247-0.46147429-1.52173824N3.43283586-0.64028930-2.25581888C1.497384882.50771519-1.53649165H2.358452582.98384684-1.08218075H1.823641162.08405755-2.47864121H0.763595883.27781321-1.76302706C-2.129269650.813016470.02896278C-1.23857581-1.76853883-0.09411689C-0.16746658-2.64221567-0.80542598H0.01734806-2.31872512-1.82478651H0.76630954-2.68393036-0.27361894H-0.55149012-3.65461747-0.87009219C-1.39973980-2.364962901.32069773	DA S ₀ // Syr C C C C C C C C C H	A- fBu ₂ S ₁ conical inter mmetry: C ₁ 1.41885083 0.15591783 0.16064554 1.49360801 -0.86560939 0.76359554 0.91913620 -0.18300684	section -0.65243331 0.13747850 0.19778706 -0.21292932 -0.18777225 1.45871793 1.44211319 0.06949570	0.78299106 1.14791833 -1.10671062 -0.61663161 -0.01124623 0.74649860 -0.64860526 2.16817104
H0.746774962.530379822.58898871H2.319770492.030316382.01422159H1.515328993.399388421.24937742C2.53708258-0.665890641.63180941N3.42978095-0.689123902.35220342C2.58450247-0.46147429-1.52173824N3.43283586-0.64028930-2.25581888C1.497384882.50771519-1.53649165H2.358452582.98384684-1.08218075H1.823641162.08405755-2.47864121H0.763595883.27781321-1.76302706C-2.129269650.813016470.02896278C-1.23857581-1.76853883-0.09411689C-0.16746658-2.64221567-0.80542598H0.01734806-2.31872512-1.82478651H0.76630954-2.68393036-0.27361894H-0.55149012-3.65461747-0.87009219C-1.39973980-2.364962901.32069773	DA So/ Syr C C C C C C C C C H H	A-fBu ₂ S ₁ conical inter mmetry: C ₁ 1.41885083 0.15591783 0.16064554 1.49360801 -0.86560939 0.76359554 0.91913620 -0.18300684 -0.05757905	section -0.65243331 0.13747850 0.19778706 -0.21292932 -0.18777225 1.45871793 1.44211319 0.06949570 0.11347023	0.78299106 1.14791833 -1.10671062 -0.61663161 -0.01124623 0.74649860 -0.64860526 2.16817104 -2.15540411
H2.319770492.030316382.01422159H1.515328993.399388421.24937742C2.53708258-0.665890641.63180941N3.42978095-0.689123902.35220342C2.58450247-0.46147429-1.52173824N3.43283586-0.64028930-2.25581888C1.497384882.50771519-1.53649165H2.358452582.98384684-1.08218075H1.823641162.08405755-2.47864121H0.763595883.27781321-1.76302706C-2.129269650.813016470.02896278C-1.23857581-1.76853883-0.09411689C-0.16746658-2.64221567-0.80542598H0.01734806-2.31872512-1.82478651H0.76630954-2.68393036-0.27361894H-0.55149012-3.65461747-0.87009219C-1.39973980-2.364962901.32069773	D A S ₀ // Syr C C C C C C C C C H H C	A-fBu ₂ S ₁ conical intermetry: C_1 1.41885083 0.15591783 0.16064554 1.49360801 -0.86560939 0.76359554 0.91913620 -0.18300684 -0.05757905 1.35617526	section -0.65243331 0.13747850 0.19778706 -0.21292932 -0.18777225 1.45871793 1.44211319 0.06949570 0.11347023 2.42915488	0.78299106 1.14791833 -1.10671062 -0.61663161 -0.01124623 0.74649860 -0.64860526 2.16817104 -2.15540411 1.70023640
H1.515328993.399388421.24937/42C2.53708258-0.665890641.63180941N3.42978095-0.689123902.35220342C2.58450247-0.46147429-1.52173824N3.43283586-0.64028930-2.25581888C1.497384882.50771519-1.53649165H2.358452582.98384684-1.08218075H1.823641162.08405755-2.47864121H0.763595883.27781321-1.76302706C-2.129269650.813016470.02896278C-1.23857581-1.76853883-0.09411689C-0.16746658-2.64221567-0.80542598H0.01734806-2.31872512-1.82478651H0.76630954-2.68393036-0.27361894H-0.55149012-3.65461747-0.87009219C-1.39973980-2.364962901.32069773	D A S ₀ // Syn C C C C C C C C C H H C H	A-fBu ₂ S ₁ conical intermetry: C_1 1.41885083 0.15591783 0.16064554 1.49360801 -0.86560939 0.76359554 0.91913620 -0.18300684 -0.05757905 1.35617526 0.74677496	section -0.65243331 0.13747850 0.19778706 -0.21292932 -0.18777225 1.45871793 1.44211319 0.06949570 0.11347023 2.42915488 2.53037982	0.78299106 1.14791833 -1.10671062 -0.61663161 -0.01124623 0.74649860 -0.64860526 2.16817104 -2.15540411 1.70023640 2.58898871
C2.53708258-0.665890641.63180941N3.42978095-0.689123902.35220342C2.58450247-0.46147429-1.52173824N3.43283586-0.64028930-2.25581888C1.497384882.50771519-1.53649165H2.358452582.98384684-1.08218075H1.823641162.08405755-2.47864121H0.763595883.27781321-1.76302706C-2.129269650.813016470.02896278C-1.23857581-1.76853883-0.09411689C-0.16746658-2.64221567-0.80542598H0.01734806-2.31872512-1.82478651H0.76630954-2.68393036-0.27361894H-0.55149012-3.65461747-0.87009219C-1.39973980-2.364962901.32069773	D A S ₀ // Syr C C C C C C C C C C C H H C H H H	$\begin{array}{c} \textbf{A-tBu}_2\\ S_1 \text{ conical inter}\\ mmetry: C_1\\ 1.41885083\\ 0.15591783\\ 0.16064554\\ 1.49360801\\ -0.86560939\\ 0.76359554\\ 0.91913620\\ -0.18300684\\ -0.05757905\\ 1.35617526\\ 0.74677496\\ 2.31977049\\ -0.122000\\ \end{array}$	section -0.65243331 0.13747850 0.19778706 -0.21292932 -0.18777225 1.45871793 1.44211319 0.06949570 0.11347023 2.42915488 2.53037982 2.03031638	0.78299106 1.14791833 -1.10671062 -0.61663161 -0.01124623 0.74649860 -0.64860526 2.16817104 -2.15540411 1.70023640 2.58898871 2.01422159
N 3.42978095 -0.68912390 2.35220342 C 2.58450247 -0.46147429 -1.52173824 N 3.43283586 -0.64028930 -2.25581888 C 1.49738488 2.50771519 -1.53649165 H 2.35845258 2.98384684 -1.08218075 H 1.82364116 2.08405755 -2.47864121 H 0.76359588 3.27781321 -1.76302706 C -2.12926965 0.81301647 0.02896278 C -1.23857581 -1.76853883 -0.09411689 C -0.16746658 -2.64221567 -0.80542598 H 0.01734806 -2.31872512 -1.82478651 H 0.76630954 -2.68393036 -0.27361894 H -0.55149012 -3.65461747 -0.87009219 C -1.39973980 -2.36496290 1.32069773	$\begin{array}{c} \mathbf{D}\mathbf{A}\\ \mathbf{S}_{0}/\mathbf{S}_{0}\\ \mathbf{S}_{0}\\ \mathbf{C}\\ \mathbf{H}\\ $	$\begin{array}{c} \textbf{A-fBu}_2\\ S_1 \text{ conical inter}\\ mmetry: C_1\\ 1.41885083\\ 0.15591783\\ 0.16064554\\ 1.49360801\\ -0.86560939\\ 0.76359554\\ 0.91913620\\ -0.18300684\\ -0.05757905\\ 1.35617526\\ 0.74677496\\ 2.31977049\\ 1.51532899\\ 0.5025250\\ \end{array}$	section -0.65243331 0.13747850 0.19778706 -0.21292932 -0.18777225 1.45871793 1.44211319 0.06949570 0.11347023 2.42915488 2.53037982 2.03031638 3.39938842	0.78299106 1.14791833 -1.10671062 -0.61663161 -0.01124623 0.74649860 -0.64860526 2.16817104 -2.15540411 1.70023640 2.58898871 2.01422159 1.24937742
C2.58450247-0.46147429-1.52173824N3.43283586-0.64028930-2.25581888C1.497384882.50771519-1.53649165H2.358452582.98384684-1.08218075H1.823641162.08405755-2.47864121H0.763595883.27781321-1.76302706C-2.129269650.813016470.02896278C-1.23857581-1.76853883-0.09411689C-0.16746658-2.64221567-0.80542598H0.01734806-2.31872512-1.82478651H0.76630954-2.68393036-0.27361894H-0.55149012-3.65461747-0.87009219C-1.39973980-2.364962901.32069773	$\begin{array}{c} \mathbf{D}\mathbf{A}\\ \mathbf{S}_{0} \\ \mathbf{S}_{0} \\ \mathbf{C}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{C}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{C}\\ \mathbf{N}\\ N$	A-fBu ₂ S_1 conical intermetry: C_1 1.41885083 0.15591783 0.16064554 1.49360801 -0.86560939 0.76359554 0.91913620 -0.18300684 -0.05757905 1.35617526 0.74677496 2.31977049 1.51532899 2.53708258	section -0.65243331 0.13747850 0.19778706 -0.21292932 -0.18777225 1.45871793 1.44211319 0.06949570 0.11347023 2.42915488 2.53037982 2.03031638 3.39938842 -0.66589064 0.66589064	0.78299106 1.14791833 -1.10671062 -0.61663161 -0.01124623 0.74649860 -0.64860526 2.16817104 -2.15540411 1.70023640 2.58898871 2.01422159 1.24937742 1.63180941
N 3.43283586 -0.64028930 -2.25581888 C 1.49738488 2.50771519 -1.53649165 H 2.35845258 2.98384684 -1.08218075 H 1.82364116 2.08405755 -2.47864121 H 0.76359588 3.27781321 -1.76302706 C -2.12926965 0.81301647 0.02896278 C -1.23857581 -1.76853883 -0.09411689 C -0.16746658 -2.64221567 -0.80542598 H 0.01734806 -2.31872512 -1.82478651 H 0.76630954 -2.68393036 -0.27361894 H -0.55149012 -3.65461747 -0.87009219 C -1.39973980 -2.36496290 1.32069773	$\begin{array}{c} \mathbf{D}\mathbf{A}\\ \mathbf{S}_{0} / \\ \mathbf{S}_{0} / \\ \mathbf{C}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{C}\\ \mathbf{N}\\ \mathbf{N}\\$	A-fBu ₂ S_1 conical intermetry: C_1 1.41885083 0.15591783 0.16064554 1.49360801 -0.86560939 0.76359554 0.91913620 -0.18300684 -0.05757905 1.35617526 0.74677496 2.31977049 1.51532899 2.53708258 3.42978095 2.52708258	section -0.65243331 0.13747850 0.19778706 -0.21292932 -0.18777225 1.45871793 1.44211319 0.06949570 0.11347023 2.42915488 2.53037982 2.03031638 3.39938842 -0.66589064 -0.68912390 0.45147420	0.78299106 1.14791833 -1.10671062 -0.61663161 -0.01124623 0.74649860 -0.64860526 2.16817104 -2.15540411 1.70023640 2.58898871 2.01422159 1.24937742 1.63180941 2.35220342
C1.497384882.507/1519-1.53649165H2.358452582.98384684-1.08218075H1.823641162.08405755-2.47864121H0.763595883.27781321-1.76302706C-2.129269650.813016470.02896278C-1.23857581-1.76853883-0.09411689C-0.16746658-2.64221567-0.80542598H0.01734806-2.31872512-1.82478651H0.76630954-2.68393036-0.27361894H-0.55149012-3.65461747-0.87009219C-1.39973980-2.364962901.32069773	$\begin{array}{c} \mathbf{D}\mathbf{A}\\ \mathbf{S}_{0} / \\ \mathbf{S}_{0} / \\ \mathbf{C}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{C}\\ \mathbf{N}\\ \mathbf{N}\\ \mathbf{C}\\ \mathbf{N}\\ \mathbf{N}\\$	A-fBu ₂ S_1 conical intermetry: C_1 1.41885083 0.15591783 0.16064554 1.49360801 -0.86560939 0.76359554 0.91913620 -0.18300684 -0.05757905 1.35617526 0.74677496 2.31977049 1.51532899 2.53708258 3.42978095 2.58450247 2.4292596	section -0.65243331 0.13747850 0.19778706 -0.21292932 -0.18777225 1.45871793 1.44211319 0.06949570 0.11347023 2.42915488 2.53037982 2.03031638 3.39938842 -0.66589064 -0.68912390 -0.46147429 0.64912390	0.78299106 1.14791833 -1.10671062 -0.61663161 -0.01124623 0.74649860 -0.64860526 2.16817104 -2.15540411 1.70023640 2.58898871 2.01422159 1.24937742 1.63180941 2.35220342 -1.52173824
H2.358452382.98584684-1.08218075H1.823641162.08405755-2.47864121H0.763595883.27781321-1.76302706C-2.129269650.813016470.02896278C-1.23857581-1.76853883-0.09411689C-0.16746658-2.64221567-0.80542598H0.01734806-2.31872512-1.82478651H0.76630954-2.68393036-0.27361894H-0.55149012-3.65461747-0.87009219C-1.39973980-2.364962901.32069773	$\begin{array}{c} \mathbf{D}\mathbf{A}\\ \mathbf{S}_{0} / \\ \mathbf{S}_{0} / \\ \mathbf{C}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{C}\\ \mathbf{N}\\ \mathbf{C}\\ \mathbf{C}\\$	$\begin{array}{c} \textbf{A-tBu}_2\\ S_1 \text{ conical inter}\\ mmetry: C_1\\ 1.41885083\\ 0.15591783\\ 0.15591783\\ 0.16064554\\ 1.49360801\\ -0.86560939\\ 0.76359554\\ 0.91913620\\ -0.18300684\\ -0.05757905\\ 1.35617526\\ 0.74677496\\ 2.31977049\\ 1.51532899\\ 2.53708258\\ 3.42978095\\ 2.58450247\\ 3.43283586\\ 1.407294989\end{array}$	section -0.65243331 0.13747850 0.19778706 -0.21292932 -0.18777225 1.45871793 1.44211319 0.06949570 0.11347023 2.42915488 2.53037982 2.03031638 3.39938842 -0.66589064 -0.68912390 -0.46147429 -0.64028930 2.571510	0.78299106 1.14791833 -1.10671062 -0.61663161 -0.01124623 0.74649860 -0.64860526 2.16817104 -2.15540411 1.70023640 2.58898871 2.01422159 1.24937742 1.63180941 2.35220342 -1.52173824 -2.25581888
H 1.82364116 2.08405755 -2.47864121 H 0.76359588 3.27781321 -1.76302706 C -2.12926965 0.81301647 0.02896278 C -1.23857581 -1.76853883 -0.09411689 C -0.16746658 -2.64221567 -0.80542598 H 0.01734806 -2.31872512 -1.82478651 H 0.76630954 -2.68393036 -0.27361894 H -0.55149012 -3.65461747 -0.87009219 C -1.39973980 -2.36496290 1.32069773	$\begin{array}{c} \mathbf{D}\mathbf{A}\\ \mathbf{S}_{0} / \\ \mathbf{S}_{0} / \\ \mathbf{C}\\ \mathbf{C}\\$	A-fBu ₂ S_1 conical intermetry: C_1 1.41885083 0.15591783 0.16064554 1.49360801 -0.86560939 0.76359554 0.91913620 -0.18300684 -0.05757905 1.35617526 0.74677496 2.31977049 1.51532899 2.53708258 3.42978095 2.58450247 3.43283586 1.49738488 2.5845258	section -0.65243331 0.13747850 0.19778706 -0.21292932 -0.18777225 1.45871793 1.44211319 0.06949570 0.11347023 2.42915488 2.53037982 2.03031638 3.39938842 -0.66589064 -0.68912390 -0.46147429 -0.64028930 2.50771519 2.9284684	0.78299106 1.14791833 -1.10671062 -0.61663161 -0.01124623 0.74649860 -0.64860526 2.16817104 -2.15540411 1.70023640 2.58898871 2.01422159 1.24937742 1.63180941 2.35220342 -1.52173824 -2.25581888 -1.53649165
H 0.76539386 5.27781321 -1.76302706 C -2.12926965 0.81301647 0.02896278 C -1.23857581 -1.76853883 -0.09411689 C -0.16746658 -2.64221567 -0.80542598 H 0.01734806 -2.31872512 -1.82478651 H 0.76630954 -2.68393036 -0.27361894 H -0.55149012 -3.65461747 -0.87009219 C -1.39973980 -2.36496290 1.32069773	$\begin{array}{c} \mathbf{D}\mathbf{A}\\ \mathbf{S}_{0}^{\prime} \\ \mathbf{S}_{0}^{\prime} \\ \mathbf{C}\\ \mathbf$	A-fBu ₂ S_1 conical intermetry: C_1 1.41885083 0.15591783 0.16064554 1.49360801 -0.86560939 0.76359554 0.91913620 -0.18300684 -0.05757905 1.35617526 0.74677496 2.31977049 1.51532899 2.53708258 3.42978095 2.58450247 3.43283586 1.49738488 2.35845258 1.82264116	section -0.65243331 0.13747850 0.19778706 -0.21292932 -0.18777225 1.45871793 1.44211319 0.06949570 0.11347023 2.42915488 2.53037982 2.03031638 3.39938842 -0.66589064 -0.68912390 -0.46147429 -0.64028930 2.50771519 2.98384684 2.08405755	0.78299106 1.14791833 -1.10671062 -0.61663161 -0.01124623 0.74649860 -0.64860526 2.16817104 -2.15540411 1.70023640 2.58898871 2.01422159 1.24937742 1.63180941 2.35220342 -1.52173824 -2.25581888 -1.53649165 -1.08218075
C -2.12920905 0.81501047 0.02896278 C -1.23857581 -1.76853883 -0.09411689 C -0.16746658 -2.64221567 -0.80542598 H 0.01734806 -2.31872512 -1.82478651 H 0.76630954 -2.68393036 -0.27361894 H -0.55149012 -3.65461747 -0.87009219 C -1.39973980 -2.36496290 1.32069773	$\begin{array}{c} \mathbf{D}\mathbf{A}\\ \mathbf{S}_{0} \\ \mathbf{S}_{0} \\ \mathbf{S}_{0} \\ \mathbf{C}\\ \mathbf{C}$	A-fBu ₂ S_1 conical intermetry: C_1 1.41885083 0.15591783 0.16064554 1.49360801 -0.86560939 0.76359554 0.91913620 -0.18300684 -0.05757905 1.35617526 0.74677496 2.31977049 1.51532899 2.53708258 3.42978095 2.58450247 3.43283586 1.49738488 2.35845258 1.82364116 0.76250588	section -0.65243331 0.13747850 0.19778706 -0.21292932 -0.18777225 1.45871793 1.44211319 0.06949570 0.11347023 2.42915488 2.53037982 2.03031638 3.39938842 -0.66589064 -0.68912390 -0.46147429 -0.64028930 2.50771519 2.98384684 2.08405755 2.27781221	0.78299106 1.14791833 -1.10671062 -0.61663161 -0.01124623 0.74649860 -0.64860526 2.16817104 -2.15540411 1.70023640 2.58898871 2.01422159 1.24937742 1.63180941 2.35220342 -1.52173824 -2.25581888 -1.53649165 -1.08218075 -2.47864121
C -1.23637361 -1.76633883 -0.09411689 C -0.16746658 -2.64221567 -0.80542598 H 0.01734806 -2.31872512 -1.82478651 H 0.76630954 -2.68393036 -0.27361894 H -0.55149012 -3.65461747 -0.87009219 C -1.39973980 -2.36496290 1.32069773	$\begin{array}{c} \mathbf{D}\mathbf{A}\\ \mathbf{S}_{0} \\ \mathbf{S}_{0} \\ \mathbf{S}_{0} \\ \mathbf{C}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{C}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{C}\\ \mathbf{N}\\ \mathbf{C}\\ \mathbf{N}\\ \mathbf{C}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{C}\\ \mathbf{N}\\ \mathbf{C}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{C}\\ \mathbf{H}\\ \mathbf{C}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{C}\\ \mathbf{H}\\ \mathbf{C}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{C}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{C}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{C}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{C}\\ \mathbf{H}\\ \mathbf{H}$	A-fBu ₂ S_1 conical intermetry: C_1 1.41885083 0.15591783 0.16064554 1.49360801 -0.86560939 0.76359554 0.91913620 -0.18300684 -0.05757905 1.35617526 0.74677496 2.31977049 1.51532899 2.53708258 3.42978095 2.58450247 3.43283586 1.49738488 2.35845258 1.82364116 0.76359588 2.1202005	section -0.65243331 0.13747850 0.19778706 -0.21292932 -0.18777225 1.45871793 1.44211319 0.06949570 0.11347023 2.42915488 2.53037982 2.03031638 3.39938842 -0.66589064 -0.68912390 -0.46147429 -0.64028930 2.50771519 2.98384684 2.08405755 3.27781321 0.81201647	0.78299106 1.14791833 -1.10671062 -0.61663161 -0.01124623 0.74649860 -0.64860526 2.16817104 -2.15540411 1.70023640 2.58898871 2.01422159 1.24937742 1.63180941 2.35220342 -1.52173824 -2.25581888 -1.53649165 -1.08218075 -2.47864121 -1.76302706 0.02806278
H 0.01734806 -2.04221367 -0.00342598 H 0.01734806 -2.31872512 -1.82478651 H 0.76630954 -2.68393036 -0.27361894 H -0.55149012 -3.65461747 -0.87009219 C -1.39973980 -2.36496290 1.32069773	$\begin{array}{c} \mathbf{D}\mathbf{A}\\ \mathbf{S}_{0} \\ \mathbf{S}_{0} \\ \mathbf{S}_{0} \\ \mathbf{C}\\ \mathbf{C}$	A-fBu ₂ S_1 conical intermetry: C_1 1.41885083 0.15591783 0.16064554 1.49360801 -0.86560939 0.76359554 0.91913620 -0.18300684 -0.05757905 1.35617526 0.74677496 2.31977049 1.51532899 2.53708258 3.42978095 2.58450247 3.43283586 1.49738488 2.35845258 1.82364116 0.76359588 -2.12926965 1.23857581	section -0.65243331 0.13747850 0.19778706 -0.21292932 -0.18777225 1.45871793 1.44211319 0.06949570 0.11347023 2.42915488 2.53037982 2.03031638 3.39938842 -0.66589064 -0.68912390 -0.46147429 -0.64028930 2.50771519 2.98384684 2.08405755 3.27781321 0.81301647 1.76852892	0.78299106 1.14791833 -1.10671062 -0.61663161 -0.01124623 0.74649860 -0.64860526 2.16817104 -2.15540411 1.70023640 2.58898871 2.01422159 1.24937742 1.63180941 2.35220342 -1.52173824 -2.25581888 -1.53649165 -1.08218075 -2.47864121 -1.76302706 0.02896278
H 0.76630954 -2.51672512 -1.52478051 H 0.76630954 -2.68393036 -0.27361894 H -0.55149012 -3.65461747 -0.87009219 C -1.39973980 -2.36496290 1.32069773	$\begin{array}{c} \mathbf{D}\mathbf{A}\\ \mathbf{S}_{0}^{\prime} \\ \mathbf{S}_{0}^{\prime} \\ \mathbf{C}\\ \mathbf$	A-fBu ₂ S_1 conical intermetry: C_1 1.41885083 0.15591783 0.16064554 1.49360801 -0.86560939 0.76359554 0.91913620 -0.18300684 -0.05757905 1.35617526 0.74677496 2.31977049 1.51532899 2.53708258 3.42978095 2.58450247 3.43283586 1.49738488 2.35845258 1.82364116 0.76359588 -2.12926965 -1.23857581 0.16746558	section -0.65243331 0.13747850 0.19778706 -0.21292932 -0.18777225 1.45871793 1.44211319 0.06949570 0.11347023 2.42915488 2.53037982 2.03031638 3.39938842 -0.66589064 -0.68912390 -0.46147429 -0.64028930 2.50771519 2.98384684 2.08405755 3.27781321 0.81301647 -1.76853883 2.64221567	0.78299106 1.14791833 -1.10671062 -0.61663161 -0.01124623 0.74649860 -0.64860526 2.16817104 -2.15540411 1.70023640 2.58898871 2.01422159 1.24937742 1.63180941 2.35220342 -1.52173824 -2.25581888 -1.53649165 -1.08218075 -2.47864121 -1.76302706 0.02896278 -0.09411689 0.80542508
H -0.55149012 -3.65461747 -0.87009219 C -1.39973980 -2.36496290 1.32069773	$\begin{array}{c} \mathbf{D}\mathbf{A}\\ \mathbf{S}_{0}^{\prime} \\ \mathbf{S}_{0}^{\prime} \\ \mathbf{C}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{C}\\ \mathbf{N}\\ \mathbf{C}\\ \mathbf{N}\\ \mathbf{C}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{C}\\ \mathbf{C}\\ \mathbf{C}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{C}\\ \mathbf{C}\\ \mathbf{C}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{C}\\ \mathbf{C}\\ \mathbf{C}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{C}\\ \mathbf{N}\\ \mathbf{C}\\ \mathbf{N}\\ \mathbf{C}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{C}\\ \mathbf{C}\\ \mathbf{C}\\ \mathbf{C}\\ \mathbf{H}\\ \mathbf{H}\\ \mathbf{C}\\ \mathbf$	$\begin{array}{l} \textbf{A-fBu}_2 \\ \textbf{S}_1 \ \text{conical inter} \\ \textbf{metry:} \ C_1 \\ 1.41885083 \\ 0.15591783 \\ 0.15591783 \\ 0.16064554 \\ 1.49360801 \\ \textbf{-}0.86560939 \\ 0.76359554 \\ 0.91913620 \\ \textbf{-}0.18300684 \\ \textbf{-}0.05757905 \\ 1.35617526 \\ 0.74677496 \\ 2.31977049 \\ 1.51532899 \\ 2.53708258 \\ 3.42978095 \\ 2.58450247 \\ 3.43283586 \\ 1.49738488 \\ 2.35845258 \\ 1.82364116 \\ 0.76359588 \\ \textbf{-}2.12926965 \\ \textbf{-}1.23857581 \\ \textbf{-}0.16746658 \\ 0.01734806 \\ \end{array}$	section -0.65243331 0.13747850 0.19778706 -0.21292932 -0.18777225 1.45871793 1.44211319 0.06949570 0.11347023 2.42915488 2.53037982 2.03031638 3.39938842 -0.66589064 -0.68912390 -0.46147429 -0.64028930 2.50771519 2.98384684 2.08405755 3.27781321 0.81301647 -1.76853883 -2.64221567 -2.31872512	0.78299106 1.14791833 -1.10671062 -0.61663161 -0.01124623 0.74649860 -0.64860526 2.16817104 -2.15540411 1.70023640 2.58898871 2.01422159 1.24937742 1.63180941 2.35220342 -1.52173824 -2.25581888 -1.53649165 -1.08218075 -2.47864121 -1.76302706 0.02896278 -0.09411689 -0.80542598 -1.82478651
C -1.39973980 -2.36496290 1.32069773	$\begin{array}{c} \mathbf{D}\mathbf{A}\\ \mathbf{S}_{0}^{\prime} \\ \mathbf{S}_{0}^{\prime} \\ \mathbf{S}_{0}^{\prime} \\ \mathbf{C} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{C} \\ \mathbf{N} \\ \mathbf{C} \\ \mathbf{N} \\ \mathbf{C} \\ \mathbf{N} \\ \mathbf{C} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{H} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{H} \\ \mathbf{C} \\ C$	A-fBu ₂ S_1 conical intermetry: C_1 1.41885083 0.15591783 0.16064554 1.49360801 -0.86560939 0.76359554 0.91913620 -0.18300684 -0.05757905 1.35617526 0.74677496 2.31977049 1.51532899 2.53708258 3.42978095 2.58450247 3.43283586 1.49738488 2.35845258 1.82364116 0.76359588 -2.12926965 -1.23857581 -0.16746658 0.01734806 0.76630954	section -0.65243331 0.13747850 0.19778706 -0.21292932 -0.18777225 1.45871793 1.44211319 0.06949570 0.11347023 2.42915488 2.53037982 2.03031638 3.39938842 -0.66589064 -0.68912390 -0.46147429 -0.64028930 2.50771519 2.98384684 2.08405755 3.27781321 0.81301647 -1.76853883 -2.64221567 -2.31872512 -2.68393036	0.78299106 1.14791833 -1.10671062 -0.61663161 -0.01124623 0.74649860 -0.64860526 2.16817104 -2.15540411 1.70023640 2.58898871 2.01422159 1.24937742 1.63180941 2.35220342 -1.52173824 -2.25581888 -1.53649165 -1.08218075 -2.47864121 -1.76302706 0.02896278 -0.09411689 -0.80542598 -1.82478651 -0.27361894
	$\begin{array}{c} \mathbf{D}\mathbf{A}\\ \mathbf{S}_{0}^{\prime} \mathbf{S}_{1}^{\prime} \mathbf{S}_{1}^{\prime} \mathbf{C}\\ \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C}$	A-fBu ₂ S_1 conical intermetry: C_1 1.41885083 0.15591783 0.16064554 1.49360801 -0.86560939 0.76359554 0.91913620 -0.18300684 -0.05757905 1.35617526 0.74677496 2.31977049 1.51532899 2.53708258 3.42978095 2.58450247 3.43283586 1.49738488 2.35845258 1.82364116 0.76359588 -2.12926965 -1.23857581 -0.16746658 0.01734806 0.76630954 -0.55149012	-0.65243331 0.13747850 0.19778706 -0.21292932 -0.18777225 1.45871793 1.44211319 0.06949570 0.11347023 2.42915488 2.53037982 2.03031638 3.39938842 -0.66589064 -0.68912390 -0.46147429 -0.64028930 2.50771519 2.98384684 2.08405755 3.27781321 0.81301647 -1.76853883 -2.64221567 -2.31872512 -2.68393036 -3.65461747	0.78299106 1.14791833 -1.10671062 -0.61663161 -0.01124623 0.74649860 -0.64860526 2.16817104 -2.15540411 1.70023640 2.58898871 2.01422159 1.24937742 1.63180941 2.35220342 -1.52173824 -2.25581888 -1.53649165 -1.08218075 -2.47864121 -1.76302706 0.02896278 -0.09411689 -0.80542598 -1.82478651 -0.27361894 -0.87009219

Н	-2 14990391	-1 86455803	1 91745028
н	-1 69718356	-3 40560832	1 24013497
н	-0.46205053	-2 34118369	1 85972632
C	-2 50937116	-2 09986797	-0.917/1177
с ц	2.50757110	3 17160007	0.87032410
п	-2.00301228	-5.1/10090/	-0.87032410
н	-3.42250928	-1.04488209	-0.5/4//521
Н	-2.3/942894	-1.85251584	-1.96508312
C	-3.1/108851	0.39835691	1.09427442
H	-3.98526400	1.11552325	1.09010646
H	-3.60866533	-0.57283741	0.94895092
Н	-2.73685346	0.41718138	2.08871770
С	-2.80147301	0.97030067	-1.35477269
Η	-3.18686302	0.05951559	-1.77584795
Η	-3.63546402	1.65970217	-1.27062548
Η	-2.10995680	1.40056396	-2.07242546
С	-1.80081196	2.27655524	0.43261424
Η	-1.37042911	2.35939033	1.42390691
Η	-1.17224694	2.79666502	-0.27611289
Н	-2.73364354	2.82804150	0.47089608
NE	BD-H ₂		
NE	BD isomer		
Sv	mmetry: C_1		
Ele	ectronic energy.	-1188 050477	14
C	1 79977	0 31136	0 77719
C	0.68752	0.87787	1 69056
C	0.37166	1 33523	1.00000
C	1 50001	1.03527	0.71607
C	0.50892	-1.05527	0.71097
	0.39663	-0.26413	2.71341
п	-0.20055	-0.10000	3.39012
Н	1.53270	-0.44/2/	3.27661
C	-0.64404	0.66448	0.92249
C	-0.85321	-0.68/6/	0.89260
Н	0.87040	1.89677	2.05448
Н	0.25434	-2.38854	1.87430
С	-1.33552	1.76675	0.24293
С	-1.86470	1.60362	-1.05947
С	-1.44373	3.03804	0.85189
С	-2.49246	2.66697	-1.71685
Η	-1.76728	0.63436	-1.55583
С	-2.07739	4.10094	0.19471
Η	-1.03866	3.19031	1.85728
С	-2.60627	3.92078	-1.09267
Η	-2.88715	2.51933	-2.72692
Η	-2.15746	5.07345	0.69023
Н	-3.09730	4.75134	-1.60846
С	-1.93580	-1.49236	0.32500
С	-1.66950	-2.79065	-0.17431
C	-3.26932	-1.01643	0.28703
Ċ	-2.69854	-3 56967	-0.72081
н	-0.64810	-3 18415	-0 14487
C	-4 29298	-1 80091	-0.25272
н	-3 /9/61	-0.02729	0.23272
C	4 01267	3 07000	0.09494
с ц	-+.01207 2 /7027	-5.01770	1 10064
11 LT	-2.47037	1 /1720	0 26617
п	-3.31/92	-1.41/38	-0.2001/
п	-4.81300	-3.09233	-1.103/8
C	2.79703	1.1/458	0.10238
U 2	4.00251	0.97558	0.02873
С	2.21992	-2.09436	-0.09810

30043
0.59045
1.02065
1.81910
2.40799
2.47499
1.17426
1.06343
1.41746
0.36441
1.90706

NBD-H₂

QC isomer

Symmetry: C_1				
Elect	ronic energy:	-1188.02089	872	
С	0.93484	-1.13560	0.67536	
С	1.21224	-0.42258	2.02045	
С	-1.02957	-0.94778	2.06553	
С	-0.56546	-1.47649	0.72867	
С	0.13969	-0.81014	3.02177	
Н	-0.03016	-0.01983	3.77350	
Н	0.37208	-1.75684	3.53843	
С	0.65407	0.37083	0.87077	
С	-0.87973	0.04134	0.90450	
Н	2.26254	-0.29030	2.29077	
Н	-2.04355	-1.18986	2.39309	
С	1.30908	1.50557	0.17897	
С	1.12565	1.68517	-1.20778	
С	2.10694	2.42381	0.88648	
С	1.72509	2.76352	-1.86887	
Н	0.50741	0.97120	-1.76108	
С	2.71109	3.50293	0.22403	
Н	2.24880	2.28996	1.96372	
С	2.51989	3.67662	-1.15511	
Н	1.57416	2.89238	-2.94498	
Н	3.32907	4.20957	0.78645	
Н	2.98856	4.51871	-1.67316	
С	-1.97981	0.85873	0.34888	
С	-3.20412	0.27202	-0.04367	
С	-1.84439	2.26099	0.25461	
С	-4.25404	1.06587	-0.52189	
Н	-3.34214	-0.81008	0.03197	
С	-2.89839	3.05086	-0.22657	
Н	-0.91080	2.73850	0.56056	
С	-4.10700	2.45889	-0.62046	
Н	-5.19329	0.59000	-0.82035	
Н	-2.76973	4.13569	-0.29173	
Н	-4.92790	3.07572	-0.99797	
С	1.98833	-1.85313	-0.06250	
0	1.90424	-3.00739	-0.46858	
С	-1.32453	-2.40876	-0.13625	
0	-2.31347	-3.05251	0.20794	
0	3.10335	-1.07433	-0.20766	
0	-0.82627	-2.40246	-1.39964	
С	-1.47781	-3.30682	-2.31768	
Н	-2.53896	-3.03729	-2.43675	
Н	-0.93652	-3.19437	-3.26560	
Н	-1.40453	-4.34140	-1.94866	
С	4.20767	-1.72229	-0.87563	

Н	5.00153	-0.96561	-0.91996
Н	4.53947	-2.60602	-0.30796
Н	3.91283	-2.03791	-1.88843
NBD-	H_2		
Transi	ition state		
Symm	netry: C_1	1105 00 (50)	
Electr	onic energy:	-1187.98670	998
<5 ⁻ > =	= 0.9808	0 17200	0 67200
C	1.36430	-0.17300	2.03351
C	-0.11998	-1 730/19	2.03331
C C	1 07132	-1.60831	0 57070
C	0.38368	-0.96879	2.76125
H	-0.42936	-0.76696	3.47850
Н	1.20932	-1.49752	3.26523
С	-0.12489	0.51580	0.89172
С	-1.01233	-0.68431	0.83818
Η	1.32811	1.13823	2.52953
Η	-0.52009	-2.73845	1.63939
С	-0.37190	1.83489	0.26139
C	-0.53118	1.93003	-1.13861
C	-0.43139	3.00929	1.03744
C	-0.74926	3.17313	-1.74381
н С	-0.46986	1.02160	-1./4468
с н	-0.03348	4.23324	0.43095
n C	-0.81385	2.94202 4 33864	-0.96128
н	-0.86425	3 23353	-2.83013
Н	-0.70531	5.15688	1.04600
Н	-0.98509	5.30959	-1.43571
С	-2.29342	-0.88234	0.25556
С	-2.78086	-2.21071	0.02807
С	-3.15793	0.20440	-0.09713
С	-4.04266	-2.42964	-0.52098
Η	-2.13395	-3.06336	0.24995
С	-4.42159	-0.03244	-0.63668
H	-2.83275	1.23012	0.08375
C	-4.87/10	-1.34608	-0.85709
H	-4.38017	-3.45546	-0.69/93
н u	-5.00490	0.81/41	-0.88512
n C	-3.80799	-1.52555	-1.26473
0	2.20170	0.02143	-1 38004
C	1.59090	-2.69985	-0.21924
Õ	0.99686	-3.78036	-0.36306
Ō	2.77486	1.70738	0.48025
0	2.81472	-2.43308	-0.76418
С	3.34298	-3.48104	-1.59949
Η	4.30508	-3.10008	-1.96573
Н	3.48223	-4.40891	-1.02127
Н	2.65999	-3.68429	-2.43960
С	3.47283	2.65873	-0.35318
H	3.82268	3.44244	0.33111
H	4.31982	2.1/694	-0.86498
н	2.78427	3.07709	-1.104/1

NBD-H₂

 S_0/S_1 conical intersection Symmetry: C_1

С	1.41711470	0.61171462	1.69431860
С	1.26695846	-0.08749700	3.01902117
С	0.69969529	-1.66408176	1.48643706
С	0.66543475	-0.34971659	0.85758104
С	1.61346105	-1.55233779	2.69603432
Н	1.34726991	-2.25557914	3.47885247
Н	2.66086749	-1.65819181	2,44380569
С	-0.24074742	-0.09130913	2.97577656
Ċ	-0 60781697	-0 92345604	1 87837943
н	1 72333962	0 36663803	3 87963922
н	0.60642251	-2 55642617	0.89616815
$\hat{\mathbf{C}}$	-1.06681659	0.71623310	3 85190785
c	2 35303745	0.30358075	1 2170/687
C	-2.55595745	1 9037/030	4.21794087
C	3 00000614	1.90374030	5 1167/335
С	-3.09090014	0.60719555	2 92407652
п	-2.73923730	-0.00/18333	5.02497033
	-1.30923319	2.00544088	3.24902020
Н	0.42725258	2.24925051	4.08335264
C	-2.57332828	2.23188646	5.62326148
Н	-4.06755326	0.71322142	5.41445698
Н	-0.91630662	3.58589726	5.634/9540
Н	-3.15687448	2.81839703	6.31019570
С	-1.96013146	-1.28591771	1.37799775
С	-2.87828128	-0.31327575	0.97995262
С	-2.33618430	-2.62374818	1.29249267
С	-4.13443935	-0.67170318	0.52583212
Η	-2.59953856	0.72265653	1.01877900
С	-3.59108468	-2.98385950	0.82686571
Η	-1.64561562	-3.39005092	1.59627208
С	-4.49554766	-2.00859244	0.44503174
Η	-4.82890186	0.09261286	0.22540319
Η	-3.85931772	-4.02353993	0.76741084
Η	-5.47024663	-2.28503114	0.08469679
С	1.76233450	1.95326646	1.53094044
0	2.09355979	2.71510465	2.42510641
С	0.30845087	-0.19293303	-0.59271567
0	0.73821258	-0.91623340	-1.43104456
0	1.74639609	2.37008991	0.24530970
0	-0.51360618	0.80460273	-0.81631217
C	-0.83486125	1.07893536	-2.16844440
Н	-1 33581538	0 23340496	-2.61702337
н	-1 49014630	1 93511012	-2.14503078
Н	0.06134293	1 30717278	-2.72601287
C	2 11918718	3 70535871	0.01227444
н	2.05173655	3 85154655	-1 05708382
н	1 45477850	1 392/1898	0.51883631
н	3 13086058	3 89243220	0.34440018
11	5.15000050	5.07245220	0.54440010
NF	SD-H ₂		
S	minimum		
Sv	mmetry: C_1		
$\hat{\mathbf{C}}$	-1 118000000	0 725768390	0.000000000
č	0.043462581	1 135579887	-0 899191911
\tilde{c}	-0.005801006	-1 1028/1371	-0.95838/7/0
c		-0 677000000	0.000004749
C	0.02/265267	0.077000000	-1 972827560
C	1 157072072	0.037437110	-1.272037300
C	1.13/7/20/3	0.00371/3/3	0.000000000
	1.07/110040	-0./34800403	0.0223/4394
C	2.1000/9004	1.380300313	0.043194080
U	3.430383281	1.1820/3009	0.885926759

С	1.735926025	2.898094158	0.952419080
С	4 345169119	2 069085450	1 418242810
C	2 (52510004	2.0000000430	1.507210297
C	2.653518994	3.768900126	1.50/21938/
С	3.959368181	3.362341077	1.738557389
С	1.707445452	-1.682917422	0.929291093
C	2 023062461	1 3/1053035	2 252617813
č	2.023002401	-1.341933933	2.232017813
C	1.9/1684109	-2.988934347	0.499179043
С	2.596905860	-2.267449068	3.100216763
С	2.560751606	-3.907223408	1.345248657
Ĉ	2 87/806781	3 5/0531055	2 647474708
C	2.074000701	-3.349531955	2.04/4/4/00
C	-1.914993535	1.756320410	0.629617773
С	-1.707652332	-1.707878833	0.836487843
С	-3.060302645	-2 232691337	2 659519647
č	2 010580542	2.232071337	1.676650070
C	-3.919389343	2.525410500	1.0/00390/9
0	-1.563085721	2.909630808	0.712195124
0	-1.528384135	-2.883420274	0.644017380
\mathbf{O}	-3 102902289	1 35/710387	1 057930334
0	-3.102/0220/	1.354/1050/	1.037750554
0	-2.443770084	-1.260613890	1.845158203
Η	0.908957981	0.034523546	-2.600733644
Н	-0.867590670	0.074559261	-2.585508958
ц	0.062266222	2 165444080	1 208272260
п	0.005200522	2.103444980	-1.208272200
Н	-0.055550959	-2.123376284	-1.290784723
Η	3.747677806	0.191480713	0.627458849
н	0 723844512	3 217583546	0 793822295
11	5.250400212	1 751769502	1 500(10500
н	5.559490212	1./51/08505	1.580018598
Н	2.347861624	4.768689154	1.757281747
Η	4.671809509	4.048252814	2.160575537
н	1 7908357/1	-0.3611031/18	2 618/132251
11	1.770055741	-0.301103140	2.010+32231
н	1.724480825	-3.279724390	-0.503005079
Η	2.820347645	-1.993372546	4.115310882
Н	2.765094912	-4.902102720	0.993938446
н	3 32/15601/18	1 267003327	3 30006/811
11	3.324309146	-4.207903327	2.141146066
Н	-2.320914554	-2.85/309261	3.141146966
Η	-3.621977635	-1.682771168	3.399754384
Н	-3 723900713	-2.857731834	2.078462997
ц	4 822160483	1 805/73071	1.064000260
п	-4.022100405	1.603473971	1.904099209
Н	-3.433964252	2.736506172	2.549830739
Η	-4.153565562	3.126007169	0.991280208
NI	CS scan.		
1		0.0	
bq	0.0 0.0	0.0	
bq	0.0 0.0	0.1	
bq	0.0 0.0	0.2	
ha	00 00	03	
64 1-		0.5	
bq	0.0 0.0	0.4	
bq	0.0 0.0	0.5	
ba	0.0 0.0	0.6	
ha	0.0.00	07	
uq 1		0.7	
bq	0.0 0.0	0.8	
bq	0.0 0.0	0.9	
ba	0.0 0.0	1.0	
ba		11	
1	0.0 0.0	1.1	
bq	0.0 0.0	1.2	
bq	0.0 0.0	1.3	
ha	0.0 0.0	1.4	
ba		1.5	
0q	0.0 0.0	1.5	
bq	0.0 0.0	1.6	
bq	0.0 0.0	1.7	
ha	0.0 0.0	1.8	
ba		1.0	
vq	0.0 0.0	1.7	
bq	0.0 0.0	2.0	

bq	0.0	0.0	2.1
bq	0.0	0.0	2.2
bq	0.0	0.0	2.3
bq	0.0	0.0	2.4
bq	0.0	0.0	2.5
bq	0.0	0.0	2.6
bq	0.0	0.0	2.7
bq	0.0	0.0	2.8
bq	0.0	0.0	2.9
bq	0.0	0.0	3.0
bq	0.0	0.0	3.1
bq	0.0	0.0	3.2
bq	0.0	0.0	3.3
bq	0.0	0.0	3.4
bq	0.0	0.0	3.5
bq	0.0	0.0	3.6
bq	0.0	0.0	3.7
bq	0.0	0.0	3.8
bq	0.0	0.0	3.9
bq	0.0	0.0	4.0
bq	0.0	0.0	4.1
bq	0.0	0.0	4.2
bq	0.0	0.0	4.3
bq	0.0	0.0	4.4
bq	0.0	0.0	4.5
bq	0.0	0.0	4.6
bq	0.0	0.0	4.7
bq	0.0	0.0	4.8
bq	0.0	0.0	4.9
bq	0.0	0.0	5.0

NBD-Me₂

NBD isomer Symmetry: C_1

Symmetry. C1				
Electronic energy: -1266.58037886				
С	1.73897	0.40234	0.34377	
С	0.67278	0.93733	1.31873	
С	0.41798	-1.28182	1.25033	
С	1.57271	-0.94931	0.29884	
С	0.67438	-0.21848	2.39110	
С	-0.67874	0.67822	0.61245	
С	-0.84710	-0.67958	0.59432	
Η	0.84294	1.96499	1.66664	
Η	0.35125	-2.33729	1.54644	
С	-1.45854	1.75560	-0.00528	
С	-2.03307	1.59622	-1.28885	
С	-1.61935	2.99865	0.64914	
С	-2.75724	2.63478	-1.88364	
Н	-1.89425	0.64969	-1.81852	
С	-2.35130	4.03539	0.05523	
Н	-1.17817	3.14634	1.63989	
С	-2.92520	3.85844	-1.21328	
Η	-3.18636	2.49217	-2.88029	
Η	-2.47224	4.98541	0.58488	
Н	-3.49212	4.66950	-1.67988	
С	-1.93794	-1.52003	0.09999	
С	-1.66973	-2.82775	-0.37225	
С	-3.28292	-1.07551	0.11259	
С	-2.70424	-3.64742	-0.84277	
Η	-0.64027	-3.19979	-0.37993	

С	-4.31321	-1.89899	-0.35132
Н	-3.51219	-0.07864	0.49870
С	-4.02982	-3.18759	-0.83690
Η	-2.47244	-4.65156	-1.21072
Η	-5.34598	-1.53779	-0.32619
Η	-4.83820	-3.83052	-1.19752
С	2.73176	1.24675	-0.34992
0	3.85108	0.90624	-0.71689
С	2.25363	-2.00279	-0.47646
0	2.40977	-3.14997	-0.05495
0	2.24032	2.51598	-0.50012
0	2.64518	-1.58532	-1.70460
С	3.38065	-2.56249	-2.47354
Η	2.77089	-3.46523	-2.63576
Η	3.60905	-2.06613	-3.42501
Η	4.30668	-2.84097	-1.94716
С	3.13165	3.43112	-1.17334
Η	2.59166	4.38579	-1.21107
Η	4.07428	3.53276	-0.61284
Η	3.35739	3.06955	-2.18878
С	2.00187	-0.40264	3.14086
Η	2.17675	0.45540	3.81259
Η	1.95589	-1.30917	3.76764
Η	2.86969	-0.49711	2.47279
С	-0.44766	-0.11444	3.43262
Η	-0.47909	-1.03064	4.04661
Н	-0.24836	0.73073	4.11374
Н	-1.43942	0.03103	2.98183

NBD-Me₂ QC isomer

Que inconnect					
Sym	metry: C_1				
Elec	tronic energy:	-1266.55414	216		
С	1.11414	-0.90034	0.22384		
С	1.29593	-0.30223	1.63537		
С	-0.79993	-1.23697	1.65011		
С	-0.29383	-1.52421	0.25932		
С	0.35523	-0.99571	2.61871		
С	0.56524	0.49568	0.59443		
С	-0.87974	-0.11871	0.61230		
Н	2.31078	-0.00729	1.91615		
Н	-1.73769	-1.70150	1.96758		
С	0.97321	1.80412	0.03204		
С	0.73920	2.09118	-1.32871		
С	1.57964	2.78276	0.84166		
С	1.10011	3.33308	-1.86432		
Н	0.27135	1.33067	-1.96184		
С	1.94555	4.02620	0.30473		
Н	1.75981	2.56451	1.89928		
С	1.70426	4.30530	-1.04908		
Η	0.91160	3.54402	-2.92135		
Н	2.41652	4.77824	0.94521		
Н	1.98661	5.27550	-1.46879		
С	-2.13126	0.53083	0.16771		
С	-3.24325	-0.23210	-0.25530		
С	-2.25892	1.93604	0.21860		
С	-4.44031	0.39549	-0.62164		
Н	-3.17760	-1.32310	-0.29005		
С	-3.45949	2.55921	-0.15121		
Η	-1.41637	2.54632	0.55165		

С	-4.55517	1.79430	-0.57623
Η	-5.28866	-0.21532	-0.94563
Η	-3.53466	3.65002	-0.10477
Η	-5.49071	2.28159	-0.86644
С	2.25790	-1.33021	-0.59802
0	2.38769	-2.44451	-1.09457
С	-0.89548	-2.48202	-0.69483
0	-1.75273	-3.31838	-0.41648
0	3.19021	-0.33544	-0.70655
0	-0.42694	-2.26745	-1.95169
С	-0.92841	-3.17847	-2.95349
Η	-2.02083	-3.07978	-3.05226
Η	-0.42345	-2.88991	-3.88407
Η	-0.68049	-4.21617	-2.68209
С	4.37640	-0.70047	-1.44487
Η	5.00490	0.19940	-1.44382
Η	4.89393	-1.54104	-0.95607
Η	4.11450	-0.99191	-2.47387
С	0.94710	-2.31330	3.13989
Η	1.84426	-2.12612	3.75457
Η	0.21497	-2.85120	3.76496
Η	1.23228	-2.97134	2.30257
С	-0.05242	-0.05350	3.76196
Η	-0.80758	-0.52892	4.41022
Η	0.81769	0.20211	4.39039
Η	-0.48124	0.88174	3.36494

NBD-Me₂

Transition state Symmetry: C_1 Electronic energy: -1266.52062081 $<S^2>=0.9887$ С 1.30243 0.37352 0.32304 С 0.70700 0.44927 1.73569 С 0.50626 -1.70507 0.94825 С 1.52385 -1.05421 0.04058 С 0.77801 -0.97198 2.32366 С -0.33532 0.43550 0.63963 С -0.73722 -0.98810 0.44274 2.33604 Η 0.88034 1.34614 Η 0.50755 -2.79966 0.97249 С -1.078041.63671 0.18560 С -1.32614 1.83208 -1.19055 С -1.53212 2.60127 1.10613 С -2.01785 2.96629 -1.63165 Η -0.96242 1.09104 -1.90821 С -2.23000 0.66400 3.73431 -1.34030 2.45566 Η 2.17369 С -2.47375 3.92030 -0.70588 Η -2.19821 3.10861 -2.70133 Η -2.58268 4.47313 1.39003 Η -3.01534 4.80585 -1.05174 С -1.91418 -0.10445 -1.56547 С -1.93444 -2.95391 -0.45944С -3.12432 -0.82193 -0.29566 С -3.08350 -3.54856 -0.97641 Η -1.02053 -3.54469 -0.35774 С -0.80593 -4.26815 -1.43443 Η -3.15778 0.23191 -0.01508 -2.79836 С -4.26207 -1.15440

H	-3.06245	-4.60742	-1.25208
Η	-5.18074	-0.84317	-0.93068
Η	-5.16227	-3.27021	-1.55827
С	1.81743	1.53375	-0.43766
С	2.05880	1.54628	-1.63919
С	2.41966	-1.77963	-0.82775
С	2.29062	-2.98590	-1.09037
С	1.90718	2.64069	0.36446
С	3.44470	-1.00971	-1.30342
С	4.33408	-1.68719	-2.21151
Η	5.07391	-0.93219	-2.50744
Η	4.82211	-2.54224	-1.71597
Η	3.78040	-2.05423	-3.09038
С	2.18776	3.86732	-0.34509
Η	2.23336	4.64584	0.42737
Η	3.14462	3.79245	-0.88408
Η	1.38144	4.07947	-1.06523
С	2.15874	-1.30149	2.89834
Η	2.36264	-0.68874	3.79311
Η	2.21371	-2.36257	3.19505
Η	2.95906	-1.10926	2.16468
С	-0.32828	-1.22701	3.35155
Η	-0.32317	-2.28194	3.67425
H	-0.17849	-0.60003	4.24737
H	-1.32406	-1.00241	2.93519

NBD-Me₂

 S_0/S_1 conical intersection

Symmetry: C_1					
С	1.27213419	0.54109262	0.54965639		
С	0.65335458	0.87954070	1.82623184		
С	0.49088096	-1.35037883	1.49226733		
С	1.52997482	-0.91062873	0.49727593		
С	0.65467506	-0.38084651	2.69576321		
С	-0.44777985	0.67297900	0.75395582		
С	-0.64840458	-0.73593708	0.71758733		
Η	0.76380566	1.86633497	2.23911521		
Η	0.41544357	-2.40286776	1.70359718		
С	-1.26335788	1.76731361	0.16567968		
С	-1.54859193	1.81751526	-1.19975010		
С	-1.75376826	2.78521154	0.97949505		
С	-2.31036496	2.84482920	-1.72528752		
Η	-1.15996981	1.05520917	-1.84791544		
С	-2.50739165	3.82185508	0.45105487		
Η	-1.54912046	2.76646965	2.03499400		
С	-2.79097051	3.85346988	-0.90279456		
Η	-2.51961968	2.86497935	-2.78009047		
Η	-2.87311157	4.59853132	1.09878090		
Η	-3.37580577	4.65598088	-1.31545271		
С	-1.64960906	-1.51647934	0.01230057		
С	-1.32734026	-2.80468607	-0.43870512		
С	-2.94676473	-1.02590676	-0.17706439		
С	-2.28247361	-3.56674027	-1.08252071		
Η	-0.32729556	-3.18106557	-0.32915982		
С	-3.90531466	-1.81369283	-0.78301325		
Η	-3.20832157	-0.04729190	0.17232932		
С	-3.57071208	-3.07819096	-1.24494375		
Η	-2.02402674	-4.54263083	-1.45003947		
Η	-4.90569165	-1.44025196	-0.90352391		
Η	-4.31474620	-3.68282696	-1.73198342		

С	1.93100085	1.59185237	-0.29771747
0	2.70329868	2.36985619	0.15952743
С	2.15541040	-1.73662378	-0.43621359
0	2.07930286	-2.92043099	-0.48819885
0	1.56814521	1.55099757	-1.55709593
0	2.92758166	-1.05084547	-1.31239250
С	3.63198406	-1.82392463	-2.24948754
Н	2.95779695	-2.40089672	-2.86834210
Н	4.18461866	-1.12560334	-2.86285207
Н	4.31828806	-2.50278012	-1.76141219
C	2.21996600	2.44756494	-2.43914670
н	1 80437067	2.25163022	-3 41476472
н	2 03039013	3 47033132	-2 14762254
н	3 28381524	2 26197578	-2 43966172
C	1 97392988	-0 57521543	3 4/15/116
н	2 10679940	0.20718/190	18368475
н	1 07832071	1 528//1/10	3 06737657
и П	2 81665148	0 55472282	2.76405363
C II	2.81003148	-0.33472282	2.70495505
с и	-0.51/504/2	-0.43090162	1 1 2 0 6 6 0 4 1
п	-0.34993912	-1.39323039	4.10000041
п	-0.41421039	0.33303030	4.44550014
н	-1.4/616949	-0.28129531	3.1916/002
NTE	D M.		
	minimum		
Svi	mmetry: C.		
C	1 560103	0 367540	0 244726
C	0.716855	0.307549	1 428046
C	0.710855	1 276356	1.420940
C	1 409077	-1.370330	0.180760
C	1.406977	-1.023164	0.160700
C	0.750879	-0.339570	2.403728
C	-0.334493	0.057200	0.045585
C II	-0.780925	-0./0/309	0.014545
H	0.937128	1.822826	1.786860
Н	0.342995	-2.418951	1.539285
C	-1.23/963	1.703224	-0.0/5/13
C	-1.801045	1.492975	-1.342026
C	-1.305109	2.987548	0.475931
С	-2.421122	2.525095	-2.016842
Η	-1.726686	0.527167	-1.802507
С	-1.939495	4.014125	-0.195614
Η	-0.868728	3.177372	1.437886
С	-2.499016	3.786304	-1.443349
Η	-2.836947	2.349404	-2.992455
Η	-1.989420	4.991534	0.248593
Η	-2.984822	4.588009	-1.969977
С	-1.920765	-1.522511	0.114170
С	-1.757242	-2.848265	-0.313950
С	-3.214208	-0.979991	0.130385
С	-2.847723	-3.587071	-0.730732
Η	-0.774695	-3.277449	-0.354562
С	-4.299924	-1.735185	-0.266960
Η	-3.371447	0.020563	0.482688
С	-4.121235	-3.038353	-0.706176
Η	-2.701623	-4.595281	-1.074003
Η	-5.285586	-1.307174	-0.231096
Η	-4.967345	-3.621728	-1.022343
С	2.091403	1.385909	-0.647498
0	2.116678	2.554304	-0.359982
С	1.975304	-2.083622	-0.629185

0	1.507271	-3.195075	-0.692830
0	2.523062	0.934299	-1.817208
0	3.098636	-1.759458	-1.253088
Č	3.692609	-2.754380	-2.057225
н	3 018205	-3.069415	-2.841253
н	4 572600	-2 298516	-2 485299
н	3 970078	-3 614738	-1 464484
C	3 073733	1 886/12	-2 700114
ч	3 382266	1 332863	3 574256
и П	2 338210	2 631011	-3.374230
и П	2.338210	2.031011	-2.970742
п	2.923374	2.3/933/	-2.232330
U U	2.12/095	-0.586267	3.041443
H	2.3634/1	0.226565	3.722455
H	2.126523	-1.50/03/	3.61/655
H	2.919058	-0.648140	2.307757
C	-0.300765	-0.28/066	3.508820
H	-0.316/47	-1.210268	4.080249
Н	-0.073723	0.520837	4.198435
Н	-1.300349	-0.121278	3.123396
NRI)_iPra		
NBI	D isomer		
Svm	metry: C_1		
Elec	tronic energy:	-1423.621531	48
C	1 55788	0 47618	-0 46264
Č	0.68450	0.89998	0.73071
Č	0.38061	-1.29737	0.47668
Č	1 35699	-0.86079	-0.62176
Č	0.85191	-0.36426	1 68063
C	-0 76831	0.71388	0.23641
C	-0.96472	-0.63385	0.10783
н	0.91872	1 89158	1 13680
н	0.35106	2 380/3	0.65210
C	1 62702	1 85048	0.05219
C	-1.02702	1.03040	-0.10791
C	-2.45500	1.03402	-1.2/120
C	-1.04212	3.01085	0.70071
U U	-3.23629	2.93172	-1.60015
Н	-2.41294	0.95393	-1.918/8
C	-2.452/1	4.105/1	0.37336
H	-1.02332	3.04633	1.60303
C	-3.25450	4.07147	-0.77785
H	-3.84610	2.90148	-2.50843
H	-2.45627	4.98931	1.01906
H	-3.88295	4.92848	-1.03763
С	-2.14583	-1.41682	-0.25585
С	-2.00095	-2.67084	-0.89675
С	-3.45386	-0.97522	0.06136
С	-3.12246	-3.43926	-1.23581
Н	-0.99970	-3.03973	-1.14085
С	-4.57055	-1.74723	-0.27270
Н	-3.58340	-0.02336	0.58339
С	-4.41247	-2.98129	-0.92768
Н	-2.98631	-4.40142	-1.73890
Н	-5.57154	-1.38957	-0.01226
Н	-5.28810	-3.58412	-1.18593
С	2.46502	1.35829	-1.21690
0	3.40435	1.00250	-1.92253
С	1.93407	-1.82807	-1.57543
0	2.35570	-2.93098	-1.22613
0	2.14116	2.67244	-1.00099

0	1.90776	-1.38852	-2.85510
С	2 54498	-2.26497	-3 81233
ц	2.08806	3 26640	3 78536
11	2.08800	-3.20049	-3.78330
H	2.38970	-1./8/12	-4./8/64
Н	3.61940	-2.34872	-3.58687
С	2.97954	3.61781	-1.69912
Н	2.59281	4.60730	-1.42369
н	4 02985	3 50/18	-1 38744
11	-1.02703	2.46050	-1.307++
п	2.91138	5.46050	-2.78098
C	2.34138	-0.65601	2.07484
Н	2.84624	-0.94297	1.13777
С	-0.17482	-0.32737	2.86414
Н	-1.06986	0.17176	2.45585
C	3 12515	0 56898	2 58356
	2 79222	0.00076	2.56550
н	2.78233	0.92935	3.30441
Н	4.19037	0.30039	2.68542
Н	3.06831	1.41166	1.87468
С	2.53803	-1.86267	3.00828
н	3 61392	-2 09707	3 07330
и Ц	2 181/1	1 67302	4.03317
11	2.10141	-1.07302	4.03317
Н	2.02966	-2./621/	2.62515
С	0.25372	0.53514	4.06506
Н	-0.60446	0.65497	4.74801
Н	1.07222	0.08153	4.64635
н	0.57314	1 5/1/18	3 75583
C	0.57514	1.70771	2 22157
C	-0.07380	-1./0//1	5.55157
Н	0.10620	-2.31454	3.81068
Н	-1.48395	-1.56865	4.07009
Η	-1.09854	-2.29084	2.49721
NBD-i	iPr ₂		
NBD-i QC iso	iPr ₂ omer		
NBD- <i>i</i> QC iso Symm	$i\mathbf{Pr}_2$ omer etry: C_1	. 1422 50002	226
NBD-i QC iso Symm Electro	$i\mathbf{Pr}_2$ omer etry: C_1 onic energy	: -1423.59883	886
NBD-i QC iso Symm Electro C	iPr_2 omer etry: C_1 onic energy -0.64239	: -1423.598838 0.73219	886 0.87461
NBD-i QC iso Symm Electro C C	$i\mathbf{Pr}_2$ omer etry: C_1 onic energy -0.64239 -1.12381	: -1423.598833 0.73219 1.03633	886 0.87461 -0.55979
NBD-i QC iso Symm Electro C C C	iPr ₂ omer etry: <i>C</i> ₁ onic energy -0.64239 -1.12381 -1.13323	: -1423.598833 0.73219 1.03633 -1.24756	886 0.87461 -0.55979 -0.39873
NBD-i QC iso Symm Electro C C C C	iPr ₂ omer etry: <i>C</i> ₁ onic energy: -0.64239 -1.12381 -1.13323 -0.66127	: -1423.598833 0.73219 1.03633 -1.24756 -0.80458	886 0.87461 -0.55979 -0.39873 0.96042
NBD-i QC iso Symm Electro C C C C C	Pr ₂ omer etry: <i>C</i> ₁ onic energy: -0.64239 -1.12381 -1.13323 -0.66127 -1.93364	: -1423.598833 0.73219 1.03633 -1.24756 -0.80458 -0 14772	886 0.87461 -0.55979 -0.39873 0.96042 -1 10452
NBD-a QC isc Symm Electro C C C C C C	Pr ₂ omer etry: <i>C</i> ₁ onic energy -0.64239 -1.12381 -1.13323 -0.66127 -1.93364 0.22272	: -1423.598833 0.73219 1.03633 -1.24756 -0.80458 -0.14772 0.71221	886 0.87461 -0.55979 -0.39873 0.96042 -1.10452 0.22202
NBD-a QC isc Symm Electro C C C C C C C	Pr ₂ omer etry: <i>C</i> ₁ onic energy -0.64239 -1.12381 -1.13323 -0.66127 -1.93364 0.32372	: -1423.598833 0.73219 1.03633 -1.24756 -0.80458 -0.14772 0.71231	886 0.87461 -0.55979 -0.39873 0.96042 -1.10452 -0.33303
NBD-i QC isc Symm Electro C C C C C C C C C C	Pr2 omer etry: <i>C</i> 1 onic energy -0.64239 -1.12381 -1.13323 -0.66127 -1.93364 0.32372 0.33314	: -1423.598833 0.73219 1.03633 -1.24756 -0.80458 -0.14772 0.71231 -0.85248	886 0.87461 -0.55979 -0.39873 0.96042 -1.10452 -0.33303 -0.24425
NBD-i QC isc Symm Electro C C C C C C C C H	Pr2 omer etry: <i>C</i> 1 onic energy: -0.64239 -1.12381 -1.13323 -0.66127 -1.93364 0.32372 0.33314 -1.40191	: -1423.598833 0.73219 1.03633 -1.24756 -0.80458 -0.14772 0.71231 -0.85248 2.07457	886 0.87461 -0.55979 -0.39873 0.96042 -1.10452 -0.33303 -0.24425 -0.75314
NBD-i QC isc Symm Electro C C C C C C C C H H	Pr2 omer etry: <i>C</i> 1 onic energy -0.64239 -1.12381 -1.13323 -0.66127 -1.93364 0.32372 0.33314 -1.40191 -1.33769	: -1423.598833 0.73219 1.03633 -1.24756 -0.80458 -0.14772 0.71231 -0.85248 2.07457 -2.31045	886 0.87461 -0.55979 -0.39873 0.96042 -1.10452 -0.33303 -0.24425 -0.75314 -0.54456
NBD-i QC isc Symm Electro C C C C C C C C H H H C	Pr2 omer etry: <i>C</i> 1 onic energy: -0.64239 -1.12381 -1.13323 -0.66127 -1.93364 0.32372 0.33314 -1.40191 -1.33769 1.48801	: -1423.598833 0.73219 1.03633 -1.24756 -0.80458 -0.14772 0.71231 -0.85248 2.07457 -2.31045 1.59777	886 0.87461 -0.55979 -0.39873 0.96042 -1.10452 -0.33303 -0.24425 -0.75314 -0.54456 -0.56520
NBD-i QC isc Symm Electro C C C C C C C C H H H C C	Pr ₂ omer etry: <i>C</i> ₁ onic energy. -0.64239 -1.12381 -1.13323 -0.66127 -1.93364 0.32372 0.33314 -1.40191 -1.33769 1.48801 2.60456	: -1423.598833 0.73219 1.03633 -1.24756 -0.80458 -0.14772 0.71231 -0.85248 2.07457 -2.31045 1.59777 1.53073	886 0.87461 -0.55979 -0.39873 0.96042 -1.10452 -0.33303 -0.24425 -0.75314 -0.54456 -0.56520 0.29380
NBD-i QC isc Symm Electro C C C C C C C C C H H C C C	Pr ₂ omer etry: <i>C</i> ₁ onic energy: -0.64239 -1.12381 -1.13323 -0.66127 -1.93364 0.32372 0.33314 -1.40191 -1.33769 1.48801 2.60456 1 51024	: -1423.598833 0.73219 1.03633 -1.24756 -0.80458 -0.14772 0.71231 -0.85248 2.07457 -2.31045 1.59777 1.53073 2.50115	886 0.87461 -0.55979 -0.39873 0.96042 -1.10452 -0.33303 -0.24425 -0.75314 -0.54456 -0.56520 0.29380 1.64401
NBD-i QC isc Symm Electro C C C C C C C C C C H H C C C C	Pr ₂ omer etry: <i>C</i> ₁ onic energy -0.64239 -1.12381 -1.13323 -0.66127 -1.93364 0.32372 0.33314 -1.40191 -1.33769 1.48801 2.60456 1.51024 2.71020	: -1423.598833 0.73219 1.03633 -1.24756 -0.80458 -0.14772 0.71231 -0.85248 2.07457 -2.31045 1.59777 1.53073 2.50115	886 0.87461 -0.55979 -0.39873 0.96042 -1.10452 -0.33303 -0.24425 -0.75314 -0.54456 -0.56520 0.29380 -1.64401 0.07284
NBD-i QC isc Symm Electro C C C C C C C C C H H H C C C C	Pr ₂ omer etry: <i>C</i> ₁ onic energy -0.64239 -1.12381 -1.13323 -0.66127 -1.93364 0.32372 0.33314 -1.40191 -1.33769 1.48801 2.60456 1.51024 3.71929	: -1423.598833 0.73219 1.03633 -1.24756 -0.80458 -0.14772 0.71231 -0.85248 2.07457 -2.31045 1.59777 1.53073 2.50115 2.34835	886 0.87461 -0.55979 -0.39873 0.96042 -1.10452 -0.33303 -0.24425 -0.75314 -0.54456 -0.56520 0.29380 -1.64401 0.07384 -1.0457
NBD-i QC isc Symm Electro C C C C C C C C H H H C C C H H	Pr ₂ omer etry: <i>C</i> ₁ onic energy -0.64239 -1.12381 -1.13323 -0.66127 -1.93364 0.32372 0.33314 -1.40191 -1.33769 1.48801 2.60456 1.51024 3.71929 2.58894	: -1423.598833 0.73219 1.03633 -1.24756 -0.80458 -0.14772 0.71231 -0.85248 2.07457 -2.31045 1.59777 1.53073 2.50115 2.34835 0.82987	886 0.87461 -0.55979 -0.39873 0.96042 -1.10452 -0.33303 -0.24425 -0.75314 -0.54456 -0.56520 0.29380 -1.64401 0.07384 1.13437
NBD-i QC isc Symm Electro C C C C C C C C C H H C C C H H C	Pr ₂ omer etry: <i>C</i> ₁ onic energy -0.64239 -1.12381 -1.13323 -0.66127 -1.93364 0.32372 0.33314 -1.40191 -1.33769 1.48801 2.60456 1.51024 3.71929 2.58894 2.62540	: -1423.598833 0.73219 1.03633 -1.24756 -0.80458 -0.14772 0.71231 -0.85248 2.07457 -2.31045 1.59777 1.53073 2.50115 2.34835 0.82987 3.32368	886 0.87461 -0.55979 -0.39873 0.96042 -1.10452 -0.33303 -0.24425 -0.75314 -0.54456 -0.56520 0.29380 -1.64401 0.07384 1.13437 -1.86308
NBD-i QC isc Symm Electro C C C C C C C C C H H C C C H H C C H H C H	Pr ₂ omer etry: <i>C</i> ₁ onic energy -0.64239 -1.12381 -1.13323 -0.66127 -1.93364 0.32372 0.33314 -1.40191 -1.33769 1.48801 2.60456 1.51024 3.71929 2.58894 2.62540 0.64885	: -1423.598833 0.73219 1.03633 -1.24756 -0.80458 -0.14772 0.71231 -0.85248 2.07457 -2.31045 1.59777 1.53073 2.50115 2.34835 0.82987 3.32368 2.55112	886 0.87461 -0.55979 -0.39873 0.96042 -1.10452 -0.33303 -0.24425 -0.75314 -0.54456 -0.56520 0.29380 -1.64401 0.07384 1.13437 -1.86308 -2.31743
NBD-i QC isc Symm Electro C C C C C C C C C C C C C C C C C C C	Pr ₂ omer etry: <i>C</i> ₁ onic energy -0.64239 -1.12381 -1.13323 -0.66127 -1.93364 0.32372 0.33314 -1.40191 -1.33769 1.48801 2.60456 1.51024 3.71929 2.58894 2.62540 0.64885 3.73341	: -1423.598833 0.73219 1.03633 -1.24756 -0.80458 -0.14772 0.71231 -0.85248 2.07457 -2.31045 1.59777 1.53073 2.50115 2.34835 0.82987 3.32368 2.55112 3.24801	886 0.87461 -0.55979 -0.39873 0.96042 -1.10452 -0.33303 -0.24425 -0.75314 -0.54456 -0.56520 0.29380 -1.64401 0.07384 1.13437 -1.86308 -2.31743 -1.00572
NBD-i QC isc Symm Electro C C C C C C C C C C C C C C C C C C C	Pr ₂ omer etry: <i>C</i> ₁ onic energy -0.64239 -1.12381 -1.13323 -0.66127 -1.93364 0.32372 0.33314 -1.40191 -1.33769 1.48801 2.60456 1.51024 3.71929 2.58894 2.62540 0.64885 3.73341 4.57973	: -1423.598833 0.73219 1.03633 -1.24756 -0.80458 -0.14772 0.71231 -0.85248 2.07457 -2.31045 1.59777 1.53073 2.50115 2.34835 0.82987 3.32368 2.55112 3.24801 2.28617	886 0.87461 -0.55979 -0.39873 0.96042 -1.10452 -0.33303 -0.24425 -0.75314 -0.54456 -0.56520 0.29380 -1.64401 0.07384 1.13437 -1.86308 -2.31743 -1.00572 0.74699
NBD-i QC isc Symm Electro C C C C C C C C C C C C C C C C C C C	Pr ₂ omer etry: <i>C</i> ₁ onic energy -0.64239 -1.12381 -1.13323 -0.66127 -1.93364 0.32372 0.33314 -1.40191 -1.33769 1.48801 2.60456 1.51024 3.71929 2.58894 2.62540 0.64885 3.73341 4.57973 2.62053	: -1423.598833 0.73219 1.03633 -1.24756 -0.80458 -0.14772 0.71231 -0.85248 2.07457 -2.31045 1.59777 1.53073 2.50115 2.34835 0.82987 3.32368 2.55112 3.24801 2.28617 4.02141	886 0.87461 -0.55979 -0.39873 0.96042 -1.10452 -0.33303 -0.24425 -0.75314 -0.54456 -0.56520 0.29380 -1.64401 0.07384 1.13437 -1.86308 -2.31743 -1.00572 0.74699 2.70614
NBD-i QC isc Symm Electro C C C C C C C C C C C C C C C C C C C	iPr ₂ omer etry: <i>C</i> ₁ onic energy -0.64239 -1.12381 -1.13323 -0.66127 -1.93364 0.32372 0.33314 -1.40191 -1.33769 1.48801 2.60456 1.51024 3.71929 2.58894 2.62540 0.64885 3.73341 4.57973 2.62953 4.60476	: -1423.598833 0.73219 1.03633 -1.24756 -0.80458 -0.14772 0.71231 -0.85248 2.07457 -2.31045 1.59777 1.53073 2.50115 2.34835 0.82987 3.32368 2.55112 3.24801 2.28617 4.02141 2.85744	886 0.87461 -0.55979 -0.39873 0.96042 -1.10452 -0.33303 -0.24425 -0.75314 -0.54456 -0.56520 0.29380 -1.64401 0.07384 1.13437 -1.86308 -2.31743 -1.00572 0.74699 -2.70614 1.1747
NBD-i QC isc Symm Electro C C C C C C C C C C C C C C C C C C C	Pr ₂ omer etry: <i>C</i> ₁ onic energy -0.64239 -1.12381 -1.13323 -0.66127 -1.93364 0.32372 0.33314 -1.40191 -1.33769 1.48801 2.60456 1.51024 3.71929 2.58894 2.62540 0.64885 3.73341 4.57973 2.62953 4.60476	: -1423.598833 0.73219 1.03633 -1.24756 -0.80458 -0.14772 0.71231 -0.85248 2.07457 -2.31045 1.59777 1.53073 2.50115 2.34835 0.82987 3.32368 2.55112 3.24801 2.28617 4.02141 3.88744	886 0.87461 -0.55979 -0.39873 0.96042 -1.10452 -0.33303 -0.24425 -0.75314 -0.54456 -0.56520 0.29380 -1.64401 0.07384 1.13437 -1.86308 -2.31743 -1.00572 0.74699 -2.70614 -1.17617 -2.70614 -1.17617
NBD-i QC isc Symm Electro C C C C C C C C C C C C C C C C C C C	Pr ₂ omer etry: <i>C</i> ₁ onic energy -0.64239 -1.12381 -1.13323 -0.66127 -1.93364 0.32372 0.33314 -1.40191 -1.33769 1.48801 2.60456 1.51024 3.71929 2.58894 2.62540 0.64885 3.73341 4.57973 2.62953 4.60476 1.47617	: -1423.598833 0.73219 1.03633 -1.24756 -0.80458 -0.14772 0.71231 -0.85248 2.07457 -2.31045 1.59777 1.53073 2.50115 2.34835 0.82987 3.32368 2.55112 3.24801 2.28617 4.02141 3.88744 -1.75350	886 0.87461 -0.55979 -0.39873 0.96042 -1.10452 -0.33303 -0.24425 -0.75314 -0.54456 -0.56520 0.29380 -1.64401 0.07384 1.13437 -1.86308 -2.31743 -1.00572 0.74699 -2.70614 -1.17617 -0.50088
NBD-i QC isc Symm Electro C C C C C C C C C C C C C C C C C C C	Pr ₂ omer etry: <i>C</i> ₁ onic energy -0.64239 -1.12381 -1.13323 -0.66127 -1.93364 0.32372 0.33314 -1.40191 -1.33769 1.48801 2.60456 1.51024 3.71929 2.58894 2.62540 0.64885 3.73341 4.57973 2.62953 4.60476 1.47617 1.54966	: -1423.598833 0.73219 1.03633 -1.24756 -0.80458 -0.14772 0.71231 -0.85248 2.07457 -2.31045 1.59777 1.53073 2.50115 2.34835 0.82987 3.32368 2.55112 3.24801 2.28617 4.02141 3.88744 -1.75350 -3.03341	886 0.87461 -0.55979 -0.39873 0.96042 -1.10452 -0.33303 -0.24425 -0.75314 -0.54456 -0.56520 0.29380 -1.64401 0.07384 1.13437 -1.86308 -2.31743 -1.00572 0.74699 -2.70614 -1.17617 -0.50088 0.09344
NBD-i QC isc Symm Electro C C C C C C C C C C C C C C C C C C C	Pr_2 omer etry: C_1 onic energy -0.64239 -1.12381 -1.13323 -0.66127 -1.93364 0.32372 0.33314 -1.40191 -1.33769 1.48801 2.60456 1.51024 3.71929 2.58894 2.62540 0.64885 3.73341 4.57973 2.62953 4.60476 1.47617 1.54966 2.49257	: -1423.598833 0.73219 1.03633 -1.24756 -0.80458 -0.14772 0.71231 -0.85248 2.07457 -2.31045 1.59777 1.53073 2.50115 2.34835 0.82987 3.32368 2.55112 3.24801 2.28617 4.02141 3.88744 -1.75350 -3.03341 -1.36959	886 0.87461 -0.55979 -0.39873 0.96042 -1.10452 -0.33303 -0.24425 -0.75314 -0.54456 -0.56520 0.29380 -1.64401 0.07384 1.13437 -1.86308 -2.31743 -1.00572 0.74699 -2.70614 -1.17617 -0.50088 0.09344 -1.40257
NBD-i QC isc Symm Electro C C C C C C C C C C C C C C C C C C C	Pr_2 omer etry: C_1 onic energy -0.64239 -1.12381 -1.13323 -0.66127 -1.93364 0.32372 0.33314 -1.40191 -1.33769 1.48801 2.60456 1.51024 3.71929 2.58894 2.62540 0.64885 3.73341 4.57973 2.62953 4.60476 1.47617 1.54966 2.49257 2.61229	: -1423.598833 0.73219 1.03633 -1.24756 -0.80458 -0.14772 0.71231 -0.85248 2.07457 -2.31045 1.59777 1.53073 2.50115 2.34835 0.82987 3.32368 2.55112 3.24801 2.28617 4.02141 3.88744 -1.75350 -3.03341 -1.36959 -3.89630	886 0.87461 -0.55979 -0.39873 0.96042 -1.10452 -0.33303 -0.24425 -0.75314 -0.54456 -0.56520 0.29380 -1.64401 0.07384 1.13437 -1.86308 -2.31743 -1.00572 0.74699 -2.70614 -1.17617 -0.50088 0.09344 -1.40257 -0.20245
NBD-i QC isc Symm Electro C C C C C C C C C C C C C C C C C C C	Pr_2 omer etry: C_1 onic energy -0.64239 -1.12381 -1.13323 -0.66127 -1.93364 0.32372 0.33314 -1.40191 -1.33769 1.48801 2.60456 1.51024 3.71929 2.58894 2.62540 0.64885 3.73341 4.57973 2.62953 4.60476 1.47617 1.54966 2.49257 2.61229 0.76786	: -1423.598833 0.73219 1.03633 -1.24756 -0.80458 -0.14772 0.71231 -0.85248 2.07457 -2.31045 1.59777 1.53073 2.50115 2.34835 0.82987 3.32368 2.55112 3.24801 2.28617 4.02141 3.88744 -1.75350 -3.03341 -1.36959 -3.89630 -3.36073	886 0.87461 -0.55979 -0.39873 0.96042 -1.10452 -0.33303 -0.24425 -0.75314 -0.54456 -0.56520 0.29380 -1.64401 0.07384 1.13437 -1.86308 -2.31743 -1.00572 0.74699 -2.70614 -1.17617 -0.50088 0.09344 -1.40257 -0.20245 0.78451
NBD-i QC isc Symm Electro C C C C C C C C C C C C C C C C C C C	Pr_2 omer etry: C_1 onic energy: -0.64239 -1.12381 -1.13323 -0.66127 -1.93364 0.32372 0.33314 -1.40191 -1.33769 1.48801 2.60456 1.51024 3.71929 2.58894 2.62540 0.64885 3.73341 4.57973 2.62953 4.60476 1.47617 1.54966 2.49257 2.61229 0.76786 3.55573	: -1423.598833 0.73219 1.03633 -1.24756 -0.80458 -0.14772 0.71231 -0.85248 2.07457 -2.31045 1.59777 1.53073 2.50115 2.34835 0.82987 3.32368 2.55112 3.24801 2.28617 4.02141 3.88744 -1.75350 -3.03341 -1.36959 -3.89630 -3.36073 -2.23644	886 0.87461 -0.55979 -0.39873 0.96042 -1.10452 -0.33303 -0.24425 -0.75314 -0.54456 -0.56520 0.29380 -1.64401 0.07384 1.13437 -1.86308 -2.31743 -1.00572 0.74699 -2.70614 -1.17617 -0.50088 0.09344 -1.40257 -0.20245 0.78451 -1.69297

Η	2.45108	-0.38820	-1.88082
С	3.62387	-3.50226	-1.09321
Н	2.64934	-4.88329	0.26895
Н	4.33322	-1.91675	-2.39367
Н	4.45491	-4.17708	-1.31873
С	-0.82183	1.68736	1.97978
0	-1.36099	1.42975	3.05160
С	-0.59466	-1.66093	2.16509
0	-1.12071	-2.76707	2.27742
0	-0.34462	2.92472	1.64575
0	0.18935	-1.09477	3.11856
С	0.27967	-1.83741	4.35382
Н	0.73234	-2.82574	4.17756
Η	0.91272	-1.22803	5.01115
Η	-0.72184	-1.96937	4.79146
С	-0.54372	3.93915	2.65413
Η	-0.09417	4.85041	2.23908
Η	-1.61791	4.08590	2.84941
Η	-0.04597	3.65133	3.59314
С	-3.38539	-0.09236	-0.52123
Η	-3.23041	0.21343	0.53257
С	-1.70969	-0.26968	-2.64861
Η	-0.61999	-0.45495	-2.73483
С	-1.98969	1.00413	-3.46867
Η	-1.59928	0.87332	-4.49234
Η	-3.06500	1.22165	-3.55481
Η	-1.49856	1.89417	-3.04319
С	-2.41748	-1.46995	-3.29808
Η	-3.50508	-1.30490	-3.37168
Η	-2.03875	-1.61890	-4.32343
Η	-2.25218	-2.40664	-2.74199
С	-4.29056	0.97240	-1.16209
Η	-4.61903	0.67205	-2.17099
Н	-5.19851	1.10660	-0.55040
Η	-3.79518	1.95403	-1.24335
С	-4.12057	-1.44431	-0.45448
Н	-5.07258	-1.31348	0.08765
Н	-4.36414	-1.84432	-1.45089
Н	-3.53811	-2.20210	0.09285
NBE Tran)-<i>i</i>Pr₂		

Trar	sitions state		
Sym	metry: C_1		
Elec	tronic energy:	-1423.56527	269
$<\!S^2$	> = 1.0041		
С	-0.55988	-1.17359	-0.17221
С	-0.48199	-0.61851	1.25526
С	-1.18693	1.04690	-0.16171
С	-1.38553	-0.23295	-0.93867
С	-1.46976	0.57123	1.33413
С	0.68908	-0.19583	0.39903
С	0.33285	1.11463	-0.20479
Н	-0.33994	-1.32977	2.07103
Η	-1.74544	1.91629	-0.51799
С	2.04061	-0.79890	0.48871
С	2.77335	-1.06473	-0.68863
С	2.60651	-1.13049	1.73541
С	4.04656	-1.64168	-0.61592
Η	2.32880	-0.82432	-1.65872
С	3.88387	-1.70399	1.80783

Н	2.04226	-0.92881	2.65121	С	-0.78218	0.50019	0.60011
С	4.60698	-1.96149	0.63255	С	-0.97138	-0.70559	-0.01862
Н	4.60140	-1.84725	-1.53616	Н	1.00855	1.34485	1.67327
Н	4.31441	-1.95075	2.78306	Н	0.46724	-2.38686	-0.45978
Н	5.60276	-2.41143	0.68842	С	-1.66434	1.66262	0.73993
С	1.13930	2.15308	-0.74603	C	-2.61785	1.96923	-0.26185
Ĉ	0 54345	3 18645	-1 54001	Č	-1 53766	2 55786	1 82801
C	2 54770	2 24529	-0 50022	C C	-3 42768	3 10465	-0.16235
C	1 30912	4 22964	-2 05729	н	-2 70375	1 31243	-1 13142
н	-0 52338	3 13416	-1 77236	C II	-2 35342	3 69197	1 93039
C	3 29836	3 29936	-1 01893	н	-0 79/18	2 36169	2 60654
с u	3.29850	1 40263	-1.01095	II C	-0.79418	2.50109	0.03806
п	2.0217	1.49203	1.90221	C U	-3.30360	2 22271	0.93600
U U	2.09247	4.29931	-1.80321	н	-4.15000	3.32271	-0.95452
н	0.82077	4.99592	-2.0/193	Н	-2.24120	4.30273	2.78785
H	4.3/0/5	3.34798	-0.80531	H	-3.93946	4.85889	1.01502
Н	3.28877	5.12117	-2.20947	C	-2.16683	-1.35948	-0.54715
С	-0.12454	-2.52966	-0.57036	C	-2.06317	-2.27627	-1.62352
0	0.06896	-2.90562	-1.72093	C	-3.44864	-1.13568	0.01629
С	-2.23786	-0.35413	-2.09651	C	-3.20009	-2.91803	-2.13187
0	-2.72471	0.62072	-2.69223	Н	-1.08692	-2.47280	-2.07761
0	0.13206	-3.30261	0.53203	C	-4.57886	-1.78469	-0.48913
0	-2.48578	-1.65181	-2.44812	Н	-3.54972	-0.44501	0.85774
С	-3.30067	-1.81046	-3.62519	С	-4.46277	-2.67717	-1.56923
Η	-3.38956	-2.89494	-3.77011	Н	-3.09600	-3.61223	-2.97135
Η	-4.29168	-1.35071	-3.47946	Н	-5.55654	-1.59851	-0.03389
Н	-2.81556	-1.34082	-4.49580	Н	-5.34869	-3.18403	-1.96309
С	0.78680	-4.55630	0.23912	С	2.00496	2.03043	-0.90021
Н	0.91536	-5.05079	1.21065	0	2.92267	2.11615	-1.71056
Н	0.16833	-5.16903	-0.43451	Č	1.32503	-0.74798	-2.55162
Н	1.76350	-4.36829	-0.23475	0	1.44403	-1.91635	-2.93001
C	-2 93207	0.04339	1 47406	Ő	1 49590	3 10248	-0 21890
н	-2 96447	-0 84497	0.81215	0	1 31996	0 31831	-3 38838
C	-0.94595	1 64078	2 34053	C	1.56695	0.00351	-4 77590
ч	0.01610	1.04070	1 80782	с н	0.78700	0.000001	5 16360
n C	0.01010	1.20055	2 7 4 7 7 4	П Ц	1 54557	-0.07070	5 20711
с u	-0.39008	1.12104	3.74724 4.20208	п	2 55002	0.90883	-3.29/11
п	-0.03429	1.90210	4.29308	пС	2.55005	-0.47939	-4.00042
н	-1.4/905	0.8/3/1	4.54690	C U	2.08732	4.3/349	-0.56474
П	0.05578	0.22748	3./1204	Н	1.54795	5.11018	0.03087
C	-1.82079	2.89998	2.44762	H	3.16214	4.37623	-0.32356
H	-2.74829	2.70545	3.01119	H	1.96203	4.57500	-1.64002
Н	-1.27152	3.69172	2.98434	C	2.72594	-1.19444	1.25268
Н	-2.09907	3.29972	1.45921	C	0.36000	-1.56020	2.51619
С	-3.28941	-0.45654	2.88367	C	3.41488	-0.09196	2.10041
Н	-3.43573	0.38145	3.58517	Н	2.99755	0.04246	3.10535
Η	-4.23613	-1.02160	2.84936	Н	4.48652	-0.33128	2.21123
Η	-2.51835	-1.12373	3.30245	Н	3.35597	0.87977	1.58172
С	-4.03168	0.98818	0.95216	C	3.11609	-2.61434	1.76503
Η	-5.00063	0.46064	0.97114	Н	4.21331	-2.64845	1.87238
Η	-4.13918	1.89097	1.57202	Н	2.69259	-2.92250	2.72458
Н	-3.85505	1.30189	-0.08865	Н	2.84584	-3.37775	1.01589
				С	1.13622	-1.34169	3.84950
NBD)-tBu ₂			Н	0.61114	-1.89350	4.64733
NBD) isomer			Н	2.17883	-1.66999	3.86852
Svm	metry: C_1			Н	1.11489	-0.27497	4.13265
Elect	tronic energy.	-1502.10991	524	C	0.07232	-3.06527	2.26712
C	1.33812	0.78948	-0.46520	н	0.94206	-3.65394	1.95465
č	0.72860	0.58466	0.93409	Н	-0.32684	-3.52030	3,19007
č	0.43565	-1 33230	-0 16062	и П	-0 702004	_3 17530	1 48076
Ċ	1 173/3	-0 37101	_1 1/222		-1 03875	_0 08100	2 900/2
C	1.12545	0.02026	1 22029	С 11	1.03073	0.11172	2.30042
U	1.11331	-0.72730	1.22030	п	-1.03047	0.111/2	5.02201

H H C	-1.84001 -1.30780 3.49765	-1.25401 -1.41205 -1.16278	2.20473 3.88149 -0.10718
Н	3.49705	-1 84486	-0.85587
Н	3.60323	-0.16735	-0.55547
Н	4.52041	-1.52633	0.09512
	-		
NBD-	tBu ₂		
Symm	hetry: C_1		
Electro	onic energy:	-1502.112423	371
С	-0.42673	0.80735	0.91374
С	-1.04807	1.03388	-0.47930
С	-1.05251	-1.23188	-0.19277
C	-0.44571	-0.72179	1.08899
C	-1.91963	-0.16923	-0.88494
C	0.41954	0.70549	-0.3/304
с u	0.45264	-0.84843	-0.18292
н Н	-1.33342	2.00477	-0.70038
C	1 56119	1 58191	-0.20317
C	2.74506	1.50191	0.04013
č	1.49126	2.48294	-1.80458
С	3.83398	2.34772	-0.27256
Н	2.80222	0.82999	0.88305
С	2.58121	3.30933	-2.11689
Н	0.57598	2.53489	-2.40226
С	3.75617	3.24266	-1.35357
Н	4.74576	2.29305	0.32998
H	2.51163	4.00442	-2.95922
Н	4.60723	3.88570	-1.59711
C	1.53635	-1.79588	-0.44441
C	1.54899	-3.06976	0.16937
C	2.57407	-1.4//55	-1.340/2
с н	2.30671	-3.98797	-0.10703
C II	3 59629	-2 39874	-1 61730
Н	2.58201	-0.50555	-1.84379
C	3.60188	-3.65701	-0.99896
Н	2.55595	-4.96770	0.38044
Н	4.39021	-2.12715	-2.31983
Н	4.40032	-4.37430	-1.21057
С	-0.40716	1.81898	1.98014
0	-0.62408	1.59987	3.16811
C	-0.27886	-1.50755	2.33554
0	-0.93158	-2.50564	2.63524
0	-0.13297	3.06094	1.47515
C	0.74454	-1.01910	5.07997
н	1 19122	-1.08898	4.34182
Н	1.19122	-1 16721	4 80749
Н	0.05515	-1.60741	4.96991
С	-0.09967	4.11644	2.45976
Н	0.13670	5.02859	1.89684
Н	-1.07489	4.20755	2.96351
Η	0.67566	3.91316	3.21483
С	-3.37210	-0.11885	-0.18424
C	-1.88981	-0.35863	-2.47974
C	-2.23339	0.95184	-3.23163
Н	-2.17223	0.76969	-4.31837

н	-3.23723	1.33668	-3.01900
Н	-1.50673	1.74700	-2.99709
С	-2.82572	-1.48507	-2.97375
Н	-3.89138	-1.27976	-2.80290
Н	-2.68738	-1.61129	-4.06145
Н	-2.57922	-2.44998	-2.50044
С	-4.41875	0.71091	-0.96332
Н	-4.68445	0.28856	-1.94259
Н	-5.34709	0.75012	-0.36794
Η	-4.08414	1.75150	-1.10992
С	-3.93228	-1.54316	0.05762
Η	-4.94526	-1.46141	0.48779
Η	-4.01320	-2.14834	-0.85498
Η	-3.31364	-2.09213	0.78576
С	-3.32146	0.54244	1.21802
Н	-2.65552	0.02601	1.92277
Η	-3.03211	1.60405	1.17046
Η	-4.33442	0.50151	1.65359
С	-0.47998	-0.75927	-2.98510
Η	0.29008	-0.01590	-2.73274
Η	-0.15286	-1.73898	-2.60709
Η	-0.51299	-0.82572	-4.08578
NBD	- <i>t</i> Bu ₂		
Trans	sition state		
Symr	metry: C_1		
Elect	ronic energy:	-1502.06536	876
$< S^{2} >$	= 1.0117		
С	0.42368	-1.13284	0.51923
С	0.58306	-0.89724	-0.98503
С	1.11943	1.03508	0.09219
С	1.06154	-0.00712	1.19245
С	1.65106	0.21155	-1.16183
С	-0.71119	-0.24941	-0.54843
С	-0.39475	1.10759	-0.09144
Η	0.54481	-1.77915	-1.62810
Η	1.62752	1.97056	0.34294
С	-2.03950	-0.86137	-0.73455
С	-2.99679	-0.82330	0.30508
С	-2.36529	-1.52388	-1.93703
С	-4.24865	-1.42497	0.13805
Н	-2.73915	-0.33418	1.24838
С	-3.62260	-2.11913	-2.10533
Η	-1.62710	-1.56500	-2.74408
С	-4.56786	-2.07208	-1.06824
Н	-4.97562	-1.39643	0.95513
Н	-3.86387	-2.62244	-3.04645
Н	-5.54781	-2.54131	-1.19713
С	-1.24646	2.18376	0.31533
С	-0.76122	3.18529	1.21027
С	-2.57034	2.33528	-0.19688
С	-1.56614	4.26491	1.57819
Η	0.23200	3.07197	1.65467
С	-3.35989	3.42536	0.17250
Η	-2.95823	1.60411	-0.90924
С	-2.86873	4.39731	1.06344
Η	-1.17742	5.00764	2.28171
Η	-4.36704	3.52410	-0.24446
Η	-3.49339	5.24774	1.35170
C	0 1 2002	2 33807	1 10443

0	-0.61576	-2.44912	2.24717
С	1.43707	0.27833	2.55910
õ	1 60050	1 42100	2.06906
0	1.09939	1.42199	2.90890
0	-0.27281	-3.33642	0.16254
0	1.53161	-0.83779	3.33808
С	1 87330	-0 58643	471515
и П	1.07590	1 57540	5 10055
п	1.89389	-1.3/349	5.19055
Н	2.85483	-0.09099	4.79013
Η	1.11313	0.05487	5.18889
С	-1.04615	-4 47939	0 58395
и П	1.02094	5 17126	0.26921
п	-1.02984	-3.1/150	-0.20821
Н	-0.59769	-4.94489	1.47531
Н	-2.07895	-4.17373	0.81665
С	3 1 5 3 2 6	-0 34385	-0 88876
C	1 45922	0.00747	2 55072
C	1.43833	0.99747	-2.33075
C	1.38753	0.01578	-3.75235
Н	1.31608	0.59828	-4.68695
н	2 24295	-0 65934	-3 85133
11	0.47525	0.0000	2 60007
п	0.4/555	-0.00188	-3.69097
C	2.55488	2.06641	-2.77873
Η	3.57342	1.66782	-2.85670
н	2 34184	2 60338	-3 71889
ц	2.51101	2.00330	1.06700
п	2.34237	2.81403	-1.90790
C	3.89147	-0.85934	-2.15262
Н	4.00465	-0.12255	-2.95660
Н	4.90860	-1.16223	-1.85190
ц	3 40157	1 75577	2 56782
11	3.40137	-1.75577	-2.30782
C	4.02999	0.74377	-0.21617
Н	5.05048	0.34762	-0.07598
Н	4.11477	1.66665	-0.80590
н	3 64808	1.01161	0 78176
	2.04000	1.01101	0.76170
C	3.21844	-1.58060	0.05/55
Н	2.94431	-1.36530	1.09899
Н	2.59505	-2.41691	-0.29681
н	1 26371	-1 93/66	0.07/88
	4.20371	-1.93400	0.07400
C	0.13692	1.80895	-2.6/211
Н	-0.77005	1.19220	-2.58437
Η	0.06886	2.63890	-1.95404
н	0 11877	2 25593	-3 68215
	0.11077	2.25575	5.00215
MQ-	H_2		
NBD	isomer		
Symr	netry: C_1		
Flect	ronic energy:	803 0006/0	210
C	F 26672	-005.990049	1 12202
C	-5.26672	-0.56102	1.12292
С	-5.09502	0.20867	-0.19930
С	-3.65342	-1.52243	-0.24910
Ĉ	-4 40216	_1 59578	1 09288
c	-4.40210	-1.57570	1.07200
C	-4.80569	-0.99029	-1.15163
Η	-4.46838	-0.67669	-2.15304
Н	-5.64964	-1.69509	-1.22257
С	-3 67061	0.82080	-0 17658
č	2.07001	0.02000	0.17050
C	-2.11952	-0.23533	-0.20118
Η	-5.89395	0.91012	-0.47209
Н	-3.11289	-2.42380	-0.56546
Н	-4.18188	-2.31567	1.88278

Η

С

N

С

-5.91363

-3.38565

-3.18098

-1.38963

-0.24546

2.19294

3.35398

-0.22698

1.94324

-0.06396

0.02423

-0.14648

C	-0.15366	-0 24418	-0 109/19
C	1 25570	0.10276	0.06160
C	1.23373	-0.19270	-0.00100
C	1.95187	1.05208	0.04000
C	2.05030	-1.30/90	-0.12377
С	3.31952	1.12165	0.09270
Н	1.34119	1.97164	0.09114
С	3.43929	-1.30783	-0.07912
Н	1.55523	-2.33894	-0.21251
С	4.11684	-0.05899	0.03730
Η	3.79069	2.10262	0.17320
Н	4.00584	-2.23878	-0.13601
Ν	5.49394	0.00512	0.09681
С	6.28676	-1.20737	-0.03892
Ĥ	7 35058	-0.95487	0.06162
н	6.03687	-1.94120	0.74918
н	6 13821	1 60368	1 02317
C	6 16175	1 20765	-1.02517
C H	0.10175	1.29703	0.15850
H	7.24666	1.14004	0.19953
H	5.95051	1.90398	-0.76393
н	5.85366	1.88125	1.02540
MO-	H_2		
OC is	somer		
Svm	metry: C_1		
Elect	ronic energy.	-803 952230	522
C	-4 75318	0 15044	1 03499
Č	-5 16570	0 11035	-0 42087
C	3 75614	1 70117	0.15710
C	-3.75014	-1./011/	-0.13710
C	-3.81021	-1.00150	1.21030
C H	-4.94519	-1.2/401	-1.00552
H	-4.70039	-1.24123	-2.07872
Н	-5.82080	-1.92/1/	-0.85013
С	-3.81469	0.73033	-0.03763
С	-2.85354	-0.49871	0.14610
Н	-5.95019	0.78192	-0.77780
Н	-3.27117	-2.67270	-0.27454
Η	-3.54822	-1.54740	2.15456
Η	-5.26776	0.70817	1.81758
С	-3.43143	2.07891	-0.26097
Ν	-3.11034	3.19928	-0.43326
С	-1.44010	-0.45863	0.09614
С	-0.21296	-0.37822	0.05583
C	1.20305	-0.26728	0.01412
Č	1 83791	0 99417	0 13395
Ċ	2 03352	-1 40451	-0 13839
C	3 22548	1 11580	0.09507
с u	1 22127	1.00	0.09507
C	2 42265	1.00020	0.20089
	3.42203	-1.29223	-0.17171
Н	1.57252	-2.39257	-0.22417
C	4.06060	-0.02437	-0.07122
H	3.66189	2.110/7	0.19/15
H	4.01550	-2.20224	-0.27862
Ν	5.44172	0.09633	-0.14106
С	6.26563	-1.10185	-0.10287
Η	7.32191	-0.81387	-0.19462
Η	6.13993	-1.67685	0.83820
Η	6.02844	-1.77111	-0.94830
С	6.06397	1.37275	0.17552
Н	7.15051	1.28572	0.03789
и	5 70515	2 16596	-0 50321

Н	5.86780	1.69612	1.21888	
м)-H-			
Tra	2-11 2 Insition state			
Svi	mmetry: C ₁			
Ele	ctronic energ	v· -803 9204	60301	
$< S^2$	$r^{2} > = 1.0150$	y. 005.7204	100501	
C	-5.04411	0.07671	0.81893	
Č	-5.03138	0.13979	-0.69234	
Č	-3.72138	-1.6318	5 0.00584	
Ĉ	-4.56714	-1.24123	3 1.20801	
Ĉ	-4.67957	-1.27132	2 -1.17261	
Η	-4.16621	-1.27342	2 -2.14759	
Н	-5.56680	-1.92574	4 -1.20758	
С	-3.74857	0.69169	-0.06321	
С	-2.76088	-0.42540) -0.04205	
Н	-5.69728	0.81120) -1.23906	
Η	-3.25324	-2.62218	8 -0.00443	
Η	-4.39753	-1.57740	5 2.23211	
Η	-5.59522	0.78149) 1.44172	
С	-3.43673	2.07429	-0.00394	
Ν	-3.19117	3.22638	0.05558	
С	-1.40944	-0.37766	5 -0.01612	
С	-0.15686	-0.33333	3 0.00287	
С	1.23887	-0.24270	0.01658	
С	1.89462	1.02502	-0.00957	
С	2.06915	-1.40218	0.04819	
С	3.27990	1.12585	-0.00039	
Η	1.28501	1.93201	-0.04218	
С	3.45531	-1.30371	0.05789	
Η	1.59831	-2.38894	4 0.06005	
С	4.10614	-0.03542	2 0.04376	
Н	3.72769	2.12078	-0.02925	
Н	4.04247	-2.22362	2 0.07446	
N	5.48638	0.06484	0.07743	
C	6.30113	-1.1361/	-0.02419	
Н	/.36081	-0.85964	+ 0.05829	
н	0.07332	-1.84044	+ 0.79550	
П	0.15501	-1.0008	0.0000	
U U	0.12158	1.30223	-0.09800	
п u	5 80530	1.24345	-0.01555	
н Ц	5 70081	2 07138	0.68506	
11	5.79901	2.07130	0.00500	
MO-H ₂				
So/S	S_1 conical interview	ersection		
C	-4.615880	-1.228306	0.693955	
Č	-5.074952	0.123294	0.294083	
Ċ	-3.715594	-0.654792	-1.370882	
Ċ	-3.729486	-1.714969	-0.276546	
C	-5.052677	0.070897	-1.240018	
Н	-5.037354	1.062996	-1.671816	
Н	-5.866039	-0.509354	-1.662181	
С	-3.697570	0.693184	0.635729	
С	-2.862237	-0.146155	-0.289016	
Н	-5.926346	0.546439	0.798747	
Η	-3.288478	-0.902249	-2.325379	
Η	-3.144864	-2.607773	-0.238036	
Н	-4.786294	-1.662909	1.660741	

C -3.289511

1.052942 1.927952

N	-2.963990	1.388400	2.975617
С	-1.447801	-0.202759	-0.279866
С	-0.254540	-0.214925	-0.232581
С	1.173851	-0.210680	-0.144993
С	1.812584	0.293259	0.987117
С	1.970094	-0.707510	-1.173845
С	3.185233	0.304368	1.088821
Η	1.220028	0.678836	1.796598
С	3.344149	-0.704265	-1.083648
Η	1.504322	-1.105211	-2.057362
С	3.994154	-0.188274	0.050476
Η	3.623934	0.699815	1.982035
Н	3.908199	-1.103048	-1.902047
Ν	5.368810	-0.157004	0.136488
С	6.159517	-0.868285	-0.844832
Η	7.207054	-0.730660	-0.621712
Η	5.952174	-1.937026	-0.855200
Н	5.988087	-0.477503	-1.840928
С	5.995481	0.179225	1.397451
Н	7.068183	0.160604	1.274614
Н	5.724133	1.179743	1.712240
Η	5.732379	-0.514465	2.193996
ЛЛ	0 M.		
NE	Q-IVIE2		
INE Su	SD Isomer		
S yı	C_1	007 510	660150
		gy: -002.310	000139
C	4.04112	-0.0352	0 -1.02242
C	4.52728		6 -0.21089 4 0.20542
C	3.14010	1 0065	4 -0.29542
C	3.81141	-1.0965	9 -1.6/245
C	4.34216	-0.7651	1 0.64166
C	3.08970	1.1182	/ -0.112/6
C	2.23425	0.0343	/ -0.16666
H	5.31835	1.2546	9 0.10201
H	2.64798	-2.1660	3 -0.06185
H	3.57982	-1.7345	5 -2.52685
H	5.24239	0.3912	2 -2.42709
C	2.75887	2.48092	2 -0.02161
Ν	2.51648	3.6352	0 0.06269
С	0.84470	-0.0064	1 -0.13034

С

С

С

С

С

Η

С

Η

С

Н

Η

Ν

С

Η

Η

Η

С

Η

Η

-0.38947

-1.79975

-2.54576

-2.52652

-3.93539

-2.00854

-3.91672

-1.97693

-4.66429

-4.46223

-4.42893

-6.04338

-6.76641

-7.84180

-6.60177

-6.46623

-6.78381

-7.85805

-6.51133

-0.07870

-0.10292

1.10080

-1.32031

1.09026

2.05147

-1.33968

-2.26037

-0.13293

2.04182

-2.30061

-0.14763

-1.39960

-1.21187

-1.85073

-2.13768

1.10546

0.88682

1.71593

-0.09528

-0.05215

0.06650

-0.13083

0.10942

0.12208

-0.08871

-0.23083

0.04131

0.19701

-0.16021

0.10189

-0.06189

0.05712

-1.06062

0.70377

0.12582

0.18838

1.00588
Η	-6.60582	1.71208	-0.78386
С	3.95521	-0.53539	2.11007
Η	3.71642	-1.49999	2.59007
Н	4.80629	-0.09688	2.65883
Н	3.08988	0.13051	2.23328
С	5.55354	-1.70901	0.62154
Н	6.38697	-1.26039	1.18915
Н	5.29667	-2.66144	1.11639
Н	5.90745	-1.93106	-0.39416
MQ-N	Ie ₂		
QC 1sc	omer		
Symm	etry: C_1		
Electro	onic energy:	-882.484116	525
С	4.13071	1.04725	-1.08264
С	4.59480	0.47053	0.23393
С	3.23157	-1.15235	-0.66397
С	3.21925	-0.04086	-1.69040
С	4.44588	-1.05062	0.25873
С	3.21814	1.13690	0.15474
С	2.28240	0.03120	-0.46186
Η	5.37796	0.97714	0.80476
Η	2.78427	-2.11914	-0.90910
Н	2.92645	-0.14109	-2.73548
Н	4.59699	1.88253	-1.60530
С	2.81221	2.28628	0.88215
Ν	2.47572	3.24711	1.47541
С	0.87187	-0.02570	-0.36981
С	-0.35529	-0.04674	-0.27680
С	-1.77257	-0.07340	-0.17240
C	-2.55354	1.06727	-0.48422
Č	-2.46063	-1.24059	0.24202
C	-3.94296	1.04924	-0.38096
H	-2.04951	1.98063	-0.81194
C	-3 85023	-1 27083	0 34258
н	-1 88442	-2.13834	0.48322
C	-4 63324	-0 11941	0.04759
н	-4 49546	1 95500	-0.63645
н	-4 33032	-2 19905	0.65710
N	-6.01311	-0.13370	0.18085
C	-6 69512	-1 39016	0.10003
н	-7.77210	-1 19938	0.55106
н	-6.54841	-2.13492	-0.36129
Н	-6.34345	-1.83783	1.39445
C	-6.79335	0.99470	-0.30268
H	-7.85499	0.81736	-0.08276
Н	-6.49842	1.92813	0.20821
Н	-6.68454	1.15037	-1.39585
C	4.13658	-1.57296	1.66947
H	3.94214	-2.65856	1.65039
H	4.98544	-1.39446	2.35096
н	3 24762	-1 07172	2.08569
C	5 67797	-1 73952	-0 34910
й	6 57212	-1 56985	0.27/08
н	5 52032	-2 82800	-0 42132
н	5 88708	-2.02090	-0.72132
11	5.00290	-1.55525	-1.30131

MQ-Me₂ Transition state Symmetry: *C*₁

Elec	tronic energy:	-882.452616	419
$< S^{2} >$	· = 1.0151		
С	4.41174	0.74873	-1.17700
С	4.51570	0.53499	0.31476
С	3.25781	-1.16401	-0.60458
С	3.97076	-0.50225	-1.77113
С	4.30112	-0.97284	0.56820
С	3.15701	1.09903	-0.09939
С	2.23709	-0.06007	-0.27588
Н	5.18742	1.13873	0.93163
Н	2.85243	-2.17367	-0.74187
Н	3.74260	-0.66116	-2.82590
Н	4.86775	1.59256	-1.69531
С	2.76226	2.44251	0.12743
N	2.44729	3.56501	0.30697
С	0.88545	-0.09816	-0.22475
С	-0.36612	-0.13584	-0.17201
С	-1.76337	-0.14005	-0.10236
С	-2.49131	1.05704	0.17060
С	-2.52396	-1.32951	-0.30535
С	-3.87860	1.06272	0.24146
Н	-1.93678	1.98713	0.32147
С	-3.91201	-1.32618	-0.23445
Н	-1.99737	-2.26203	-0.52603
С	-4.63449	-0.13115	0.05174
Н	-4.38400	2.00801	0.44657
Н	-4.44358	-2.26390	-0.40569
Ν	-6.01575	-0.13036	0.14834
С	-6.76483	-1.33012	-0.19178
Η	-7.83383	-1.14756	-0.01765
Η	-6.62987	-1.62702	-1.25181
Н	-6.46201	-2.18040	0.44471
С	-6.73024	1.13092	0.27640
Η	-7.80582	0.92695	0.36511
Η	-6.41612	1.67548	1.18443
Н	-6.57185	1.79543	-0.59691
С	3.70907	-1.25486	1.95256
Η	3.46345	-2.32554	2.05706
Η	4.43536	-0.99828	2.74268
Η	2.78893	-0.67485	2.12698
С	5.58702	-1.77842	0.34869
Η	6.33998	-1.52485	1.11453
Η	5.38187	-2.85995	0.42558
Η	6.02011	-1.58248	-0.64568
MQ-Me2 S ₀ /S ₁ conical intersection			

S0/S1 conical intersection			
С	3.96857332	0.07754992	-1.43607783
С	4.44047431	0.53734040	-0.10802792
С	3.14709045	-1.30624298	0.23297734
С	3.11858959	-1.02219630	-1.26184942
С	4.49284121	-0.75871385	0.74068776
С	3.05105939	1.10802179	0.17378259
С	2.25251818	-0.15327042	0.05571303
Η	5.27385174	1.21930454	-0.06973304
Η	2.75221589	-2.24153637	0.58892911
Η	2.53141156	-1.51885571	-2.00287591
Η	4.11243100	0.62164223	-2.35038643
С	2.59796971	2.36187752	-0.25463452
Ν	2.23540910	3.40440915	-0.56814233

С	0.83854276	-0.22246778	0.04286321	
С	-0.35578777	-0.22877641	0.03995327	
С	-1.78653224	-0.20067576	0.03335851	
С	-2.47078821	0.99274997	-0.19314084	
С	-2.54046219	-1.35201523	0.24678679	
С	-3.84643411	1.03794183	-0.20403894	
Η	-1.91154944	1.89443148	-0.36424035	
С	-3.91706089	-1.32094070	0.23633814	
Η	-2.03916114	-2.28690924	0.42106283	
С	-4.61249212	-0.11926434	0.01833080	
Η	-4.32122946	1.98034232	-0.38619327	
Η	-4.44764830	-2.23650781	0.40133858	
Ν	-5.98896630	-0.07549336	0.03197566	
С	-6.74118379	-1.31142109	0.05249291	
Η	-7.79652356	-1.08300503	0.06081238	

Η	-6.53707195	-1.94004531	-0.81253683
Η	-6.52764061	-1.88324932	0.94806319
С	-6.66814995	1.12800461	-0.39905903
Η	-7.73469557	0.98043968	-0.31686432
Η	-6.40880676	1.96923572	0.23273911
Η	-6.44009866	1.39041692	-1.43048550
С	4.48599958	-0.49387961	2.24602748
Η	4.39360505	-1.42751081	2.79377327
Η	5.41607684	-0.02420392	2.55259965
Η	3.67086636	0.15684540	2.53165284
С	5.67042152	-1.66236245	0.36804613
Η	6.61003479	-1.18849339	0.63537567
Η	5.61515365	-2.60543720	0.90344735
Η	5.69712600	-1.88423213	-0.69288313

Figure S45. 400 MHz ¹H NMR spectrum of compound 1 in CDCl₃.

Figure S56. 400 MHz ¹H NMR spectrum of compound QC-Me₂ in CDCl₃.

Figure S60. 500 MHz ¹H NMR spectrum of crude product containing compound 10 in CDCl₃.

S92

Figure S66. Room-temperature 400 MHz ¹H NMR spectra of **NBD-***i***Pr₂** and **QC-***i***Pr₂** in toluene-d₆, highlighting the methine protons of the *i*Pr groups.

11 References

Full Gaussian09 reference

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09 (Revision E.01) Gaussian, Inc., Wallingford CT, 2009.

Full Dalton 2016.0 reference

K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast, L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani, P. Dahle, E. K. Dalskov, U. Ekström, T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernández, L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier, C. Hättig, H. Heiberg, T. Helgaker, A. C. Hennum, H. Hettema, E. Hjertenæs, S. Høst, I.-M. Høyvik, M. F. Iozzi, B. Jansík, H. J. A. Jensen, D. Jonsson, P. Jørgensen, J. Kauczor, S. Kirpekar, T. Kjærgaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch, J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue, O. B. Lutnæs, J. I. Melo, K. V Mikkelsen, R. H. Myhre, C. Neiss, C. B. Nielsen, P. Norman, J. Olsen, J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski, T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius, T. A. Ruden, K. Ruud, V. V Rybkin, P. Sałek, C. C. M. Samson, A. S. de Merás, T. Saue, S. P. A. Sauer, B. Schimmelpfennig, K. Sneskov, A. H. Steindal, K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale, E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thøgersen, O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski and H. Ågren, *Wiley Interdiscip. Rev. Comput. Mol. Sci.*, 2014, **4**, 269–284.

- 1 W. J. Kerr, M. McLaughlin, P. L. Pauson and S. M. Robertson, J. Organomet. Chem., 2001, 630, 104–117.
- 2 B. M. Trost and A. B. Pinkerton, J. Org. Chem., 2001, 66, 7714–7722.
- 3 E. Dalkılıç and A. Daştan, *Tetrahedron*, 2015, **71**, 1966–1970.
- 4 H. E. Zimmerman and J. A. Pincock, J. Am. Chem. Soc., 1973, 95, 3246–3250.
- 5 S. Miki, Y. Asako and Z. Yoshida, *Chem. Lett.*, 1987, 16, 195–198.
- 6 S. Bogen, M. Gulea, L. Fensterbank and M. Malacria, J. Org. Chem., 1999, 64, 4920–4925.
- 7 S. Chiba, Y.-J. Xu and Y.-F. Wang, J. Am. Chem. Soc., 2009, 131, 12886–12887.
- 8 H.-T. Zhu, K.-G. Ji, F. Yang, L.-J. Wang, S.-C. Zhao, S. Ali, X.-Y. Liu and Y.-M. Liang, Org. Lett., 2011, 13, 684–687.
- 9 R. Emanuelsson, A. Wallner, E. A. M. Ng, J. R. Smith, D. Nauroozi, S. Ott and H. Ottosson, *Angew. Chemie, Int. Ed.*, 2013, **52**, 983–987.
- 10 P. Klán and J. Wirz, *Photochemistry of Organic Compounds: From Concepts to Practice*, Wiley-Blackwell, 2009.
- (a) G. Gauglitz and S. Hubig, J. Photochem., 1981, 15, 255–257. (b) H. J. Kuhn, S. E. Braslavsky and R. Schmidt, Pure Appl. Chem., 2004, 76, 2105–2146. (c) M. T. Gandolfi and L. Moggi, in *The Exploration of Supramolecular Systems and Nanostructures by Photochemical Techniques*, ed. P. Ceroni, Springer Netherlands, Dordrecht, 2012, pp. 67–95.
- 12 A. Dreos, K. Börjesson, Z. Wang, A. Roffey, Z. Norwood, D. Kushnir and K. Moth-Poulsen, *Energy Environ. Sci.*, 2016, **22**, 627–633.
- 13 B. O. Roos, M. Merchán, R. McDiarmid and X. Xing, J. Am. Chem. Soc., 1994, 116, 5927–5936.
- 14 I. Antol, J. Comput. Chem., 2013, 34, 1439–1445.
- 15 K. Andersson, P.-Å. Malmqvist and B. O. Roos, J. Chem. Phys., 1992, 96, 1218–1226.
- 16 J. Finley, P.-Å. Malmqvist, B. O. Roos and L. Serrano-Andrés, *Chem. Phys. Lett.*, 1998, 288, 299–306.
- 17 V. Bonačić-Koutecký, J. Koutecký and J. Michl, Angew. Chemie, Int. Ed., 1987, 26, 170–189.
- 18 I. Fdez. Galván, M. G. Delcey, T. B. Pedersen, F. Aquilante and R. Lindh, J. Chem. Theory Comput., 2016, **12**, 3636–3653.
- 19 W. Zou, Molden2AIM, https://github.com/zorkzou/Molden2AIM.
- 20 E. D. Glendening, K. B. J, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis and F. Weinhold, NBO 6.0, Theoretical Chemistry Institute, University of Wisconsin, Madison, 2013.
- 21 W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 1996, 14, 33–38.
- 22 V. Gray, A. Lennartson, P. Ratanalert, K. Börjesson and K. Moth-Poulsen, *Chem. Commun.*, 2014, 50, 5330–5332.
- 23 J. A. Montgomery, M. J. Frisch, J. W. Ochterski and G. A. Petersson, J. Chem. Phys., 2000, 112, 6532– 6542.
- 24 P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, J. Phys. Chem., 1994, 98, 11623–11627.
- (a) P. R. Schreiner, A. Navarro-Vázquez and M. Prall, Acc. Chem. Res., 2004, 38, 29–37. (b) S. N. Datta, C. Trindle and F. Illas, *Theoretical and computational aspects of magnetic organic molecules*, Imperial College Press, London, 2014. Pages 91-93.
- 26 K. Yamaguchi, Y. Takahara, T. Fueno and K. N. Houk, Theor. Chim. Acta, 1988, 73, 337–364.
- 27 N. C. Handy, J. A. Pople, M. Head-Gordon, K. Raghavachari and G. W. Trucks, *Chem. Phys. Lett.*, 1989, 164, 185–192.
- 28 H. M. Frey, J. Chem. Soc., 1964, 365-367.
- 29 M. J. Kuisma, A. M. Lundin, K. Moth-Poulsen, P. Hyldgaard and P. Erhart, *J. Phys. Chem. C*, 2016, **120**, 3635–3645.
- 30 M. Giambiagi, M. S. de Giambiagi, C. D. dos Santos Silva and A. P. de Figueiredo, *Phys. Chem. Chem. Phys.*, 2000, **2**, 3381–3392.
- 31 R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Clarendon Press, Oxford, 1990.
- 32 P. Bultinck, R. Ponec and S. Van Damme, J. Phys. Org. Chem., 2005, 18, 706–718.
- 33 E. Matito, ESI-3D: electron sharing indexes program for 3D molecular space partitioning, Girona: Institute of Computational Chemistry and Catalysis, 2006. <u>http://iqc.udg.es/~eduard/ESI</u>.
- 34 (a) P. B. Karadakov, J. Phys. Chem. A, 2008, 112, 7303–7309. (b) P. B. Karadakov, J. Phys. Chem. A, 2008, 112, 12707–12713.
- A. Banerjee, D. Halder, G. Ganguly and A. Paul, Phys. Chem. Chem. Phys., 2016, 18, 25308–25314.