Polysulfide reduction accelerator-modified sulfurized

polyacrylonitrile as a high performance cathode material for

lithium-sulfur battery

Yonggang Liu,^{ab} Weikun Wang,*^b Anbang Wang,*^b Zhaoqing Jin,^b Hailei Zhao,^a and Yusheng Yang^b

^a School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China, *Email: liuyonggang061@163.com.

^b Research institute of Chemical Defense, Beijing 100191, P. R. China, *E-mail: wab_wang2000@aliyun.com; wangweikun2002@163.com; Fax: +86-10-66748499; Tel: +86-10-66705840

Material Reference	S content of material	Cycle performance,1C=1.675A/g calculated based on sulfur mass / composite	capacity retention
pPAN– S/MWCNTs ¹	35.1%	0.5C, 100 cycles 1398mAh/g 491mAh/g	96.5%
PAN-S-VA ²	36.89%	0.25C, 200 cycles 1292mAh/g 477mAh/g	96.5%
S/PAN/Mg _{0.6} Ni _{0.4} O ³	38.5%	0.1C, 100 cycles 1223mAh/g 470mAh/g	~100%
S-PAN ⁴	42%	0.2C, 100 cycles 1050mAh/g 441mAh/g	88%
SPAN/RGO ⁵	44 %	0.1C, 100 cycles 1245mAh/g 548mAh/g	85%
pPAN-S@GNS ⁶	47%	0.1C, 100 cycles 1276mAh/g 600mAh/g	~86%
pPAN-S/GNS ⁷	47%	0.1C, 100 cycles 1200mAh/g 564mAh/g	80%
S/PAN/Graphene ⁸	47.3%	0.1C, 100 cycles 996mAh/g 471mAh/g	77%
NiS2-SPAN	46%	0.2A/g, 100 cycles 1533mAh/g 705mAh/g	89%

Table S1 Characteristics of various SPAN composites reported in literature

Experimental section

Preparation of the SPAN and NiS₂-SPAN materials

The mixture of NiCO₃ (0.1g), sulfur (6g) and PAN (2g) was carried out by ball-milling at 500rpm for 6h in ethanol medium. Before further processing, the mixture was dried at 60 °C in a vacuum for 24h. Then the NiS₂-SPAN composite was prepared by heating the above mixture at 350 °C for 5h at 5 °C/min. The synthesis method for SPAN composite is similar to the preparation of NiS₂-SPAN composite, but without the addition of NiCO₃ in the ball-milling process.

Materials characterization

The elemental contents of the NiS₂-SPAN and SPAN materials were determined by means of elemental analysis (CHNS, Vario EL Cube, Elementar). The content of Ni in the NiS₂-SPAN composite was determined quantitatively by inductively coupled plasma atomic emission spectrometer (ICP-AES, HORIBA Jobin Yvon ULTIMA-C). The microstructures of the samples were studied by scanning electron microscopy (SEM, JEOL, JSM-7401F) transmission electron microscopy (TEM) (JEM-2010F, JEOL, Tokyo, Japan). The phase compositions of the NiS₂-SPAN and SPAN materials were obtained by a Rigaku D/max 2500PC (Rigaku, Corp, Japan) using Cu K α radiation in the 2 θ range of 5° to 70°. X-ray photoelectron spectra (XPS) were recorded on an AXIS Ultra DLD spectrometer (Kratos) to analyze the surface composition.

Electrochemical measurements

The electrochemical experiments were carried out with CR2025 type coin cells assembled in an argon-filled glove box. The working electrode was prepared by casting the slurry of 80wt% active material, 10wt% acetylene black and 10wt% LA132 (as the binder) on an Al foil as a current collector. The electrodes were dried at 60°C under vacuum for 24h and then were cut into discs with 14mm in diameter. Sample electrodes with cathode composite loadings of *ca*. 2.5mg/cm², corresponding to sulfur load of 1.15mg/cm². 1M LiPF₆ solution in ethylene carbonate/dimethyl carbonate/diethyl carbonate (EC: DMC: DEC, volume ratio=1:1:1) as the liquid electrolyte. A Celgard2325 membrane was used as the separator. A lithium-foil was used as counter electrode. The cells were charged/discharged on a LAND CT2001A multi-channel battery test system at room temperature in a voltage range of 1-3V (vs. Li/Li⁺). Electrochemical impedance spectroscopy (EIS) was carried out on a CHI660D electrochemical workstation in the frequency range from 10⁵ to 0.01Hz and the amplitude of the used perturbation was 5mV. Cyclic voltammetry measurements were carried out on the CHI660D electrochemical workstation over the potential range 1-3V vs. Li⁺/Li at a scan rate of 0.1mV/s. The current density was calculated based on the sulfur mass of the active material.

Sample	C (wt. %)	Ni (wt. %)	S (wt. %)
SPAN	37.38		45.95
NiS ₂ -SPAN	36.61	1.3	46.01

Table S2 Elemental analysis of SPAN and NiS_2 -SPAN

Fig.S1 (a) TEM image and (b) HR-TEM image for NiS_2 -SPAN.

Fig.S2 Initial and second discharge/charge curves of SPAN and NiS₂-SPAN.

Electrode	$R_1(\Omega)$	$R_2(\Omega)$	R ₃ (Ω)
SPAN	4.26	127	46.98
NiS ₂ -SPAN	5.19	105.80	21.12

Table S3 The fitted results of EIS.

Electrode	E1 _a (V)	E1 _c (V)	ΔΕ1	E2 _a (V)	E2 _c (V)	ΔE2	E3 _a (V)	E3 _c (V)	ΔЕ3
SPAN	2.38	1.22	1.16	2.44	1.7	0.74	2.5	1.63	0.87
NiS ₂ -SPAN	2.35	1.39	0.96	2.38	1.75	0.63	2.39	1.7	0.69

Table S4 The cathodic and anodic peaks from the first CV scan.

Fig.S3 Ni2p of NiS₂-SPAN in (a) discharged state and (b) charged state.

Fig.S4 SEM images of (a, c) NiS₂-SPAN and (d, f) SPAN electrodes before and after 100 cycles.

References

1. W. Wei, J. L. Wang, L. J. Zhou, J. Yang, B. Schumann, Y. NuLi. *Electrochem. Commun.*, 2011,13, 399.

- 2. H. W. Chen, C. H. Wang, C. J. Hu, J. S. Zhang, S. Gao, W. Lu and L. W. Chen. J. Mater. Chem. A, 2015, 3, 1392.
- 3. Y. G. Zhang, Y. Zhao, A. Yermukhambetova, Z. Bakenov and P. Chen, J. Mater. Chem. A, 2013, 1, 295.
- 4. K. Jeddi, M. Ghaznavi and P. Chen, J. Mater. Chem. A, 2013, 1, 2769.
- 5. J. Li, K. Li, M. Q. Li, D. Gosselink, Y. G. Zhang and P. Chen. J. Power Sources, 2014,252,107.
- 6. J. L. Wang, L. C. Yin, H. Jia, H. T. Yu, Y. S. He, J. Yang, and C. W. Monroe. *ChemSusChem*, 2014, 7, 563.
- 7. L. C. Yin, J. J. Wang, F. J. Lin, J. Yang and Y. Nuli. Energy Environ. Sci., 2012, 5, 6966.
- 8. Y. G. Zhang, Y. Zhao, Z. Bakenov, M. R. Babaa, A. Konarov, C. Ding and P. Chen, J. *Electrochem. Soc.*, 2013, **160**, A1194.