Unexpected ultrafast and high adsorption capacity of oxygen vacancy-rich WO_x/C nanowire networks for aqueous Pb^{2+} and methylene blue removal

Shouwei Zhang,^{†a,c,d} Hongcen Yang,^{†a} Huiyan Huang,^b Huihui Gao,^a Ruya Cao,^a Xiangxue Wang,^d Jiaxing Li,^{c,d}* Xijin Xu,^a* Xiangke Wang^d*

^aSchool of Physics and Technology, University of Jinan, Shandong, 250022, P. R.

China. *E-mail: <u>sps_xuxj@ujn.edu.cn</u>

^bSchool of Chemical and Environmental Engineering, Wuyi University, Jiangmen 529020, China.

^cInstitute of Plasma Physics, Chinese Academy of Sciences P.O. Box 1126, 230031

Hefei, P. R. China Tel: +86-551-65596617, Fax: +86-551-65591310, *E-mail: <u>lijx@ipp.ac.cn(J. Li)</u>

^dSchool of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China *E-mail: <u>xkwang@ncepu.edu.cn</u>

†These authors contributed equally to this work.

Figure S1. The element mapping of W, O and C of WO_x/C nanowire networks.

Figure S2. Photo of WO_x and WO_x/C nanowire networks from one batch process.

The adsorption behaviors of MO (anionic dyes) on WO_x@C networks were investigated. The maximum capacities based on the experiment data were ~1188.3 mg/g for MB and 154.1 mg/g for MO, respectively. The different adsorption behaviors of MB (cationic dyes) and MO (anionic dyes) on WO_x@C are due to the fact that they carry opposite charges. Zeta potential results indicated that WOx@C nanowire networks are negative over the entire pH range from ~2.0 to 12.0, and thus can more effectively capture positively charged dyes by electrostatic attraction.

Figure S3. Adsorption isotherms of MB and MO on WOx@C nanowire networks.

The reusability is a key factor for an adsorbent and Figure S4 indicated the cycle performance of the WO_x/C nanowire networks toward MB adsorption. After 5cycles, the MB removal efficiency changes from ~99.7% to 94.3%. Namely, the adsorption capacity of WO_x/C networks for MB decrease slowly with increasing cycle number. Such a decrease is unavoidable due to the wastage of the adsorbent during each cycle. Therefore, the excellent stability makes the fabricated WO_x/C nanowire networks a perfect candidate for environment remediation.

Figure S4. The recycle performance of WO_x/C networks toward 80 mg/L MB solution.

The pH value of the solution had a significant influence on theadsorption of Pb²⁺ on the WO_x/C networks. The uptake of Pb²⁺ increased with increasing pH values (see Figure S5A). The surface of WO_x/C networks is negatively charged and thus can capture positively charged pollutants by electrostatic attraction. According to the zeta-potential results, the surface charge on WO_x/C is larger at higher pH values, which results in enhancement of the electrostatic attraction between WO_x/C and Pb²⁺ions. In addition, the number of available adsorption sites on the WO_x/C increased at higher pH values due to deprotonation. Therefore, higher pH values are favorable for adsorption removal of Pb²⁺ from solution using WO_x/C networks. Pb²⁺ tends to be precipitated at high pH as it forms complexes with hydroxide ions. In this work, pH value of ~5was chosen as the initial pH for Pb²⁺ adsorption tests.

The effects of foreign cations on adsorption efficiency were further investigated at pH \sim 5 in the presence of common competing cations (Na⁺ and Ca²⁺). As shown in Figure S5B, upon addition of Na⁺, no significant change in the adsorption capacity canbe observed over the concentration of Na⁺ ranging from 0.001 to 0.1 M. By contrast, the presence of Ca²⁺ can slightly reduce Pb²⁺ adsorption capacity. The decrease of adsorption capacity upon addition of Ca²⁺, nevertheless, it should be noted that the WO_x/C networks still showed a considerably high adsorption capacity for Pb²⁺, even when the high concentrationCa²⁺. The result suggests that the coordination interaction between Pb²⁺ and WO_x/C networks is considerably strong, so these foreign cations cannot well compete with Pb²⁺ ions for the adsorption sites of WO_x/C. These results also reveal that the novel WO_x/C adsorbent should be considerably promising in

capturing Pb²⁺ ions from interfering ions-containing aqueous solution.

Figure S5. (A) Effect of pH on the adsorption of Pb^{2+} by the WO_x/C networks (initial Pb^{2+} concentration: 120 mg/L, time: 24 h, NaNO₃concentration: 0.01 M, 0.1 g/L sorbent); (B) Effect of ionic strength on the adsorption of Pb^{2+} by the WO_x/C networks (initial Pb^{2+} concentration: 120 mg/L, time: 24 h, pH ~5, 0.1 g/L sorbent).

As shown in Figure S6, the removal of Pb²⁺ was slightly reduced by the existence of MB at low initial Pb²⁺ concentrations, and was significantly enhanced by the existence of MB at high Pb²⁺ concentrations in the binary systems. This synergic effect could be explained as follows: there are specific and different active sites for the removal of Pb²⁺ and MB on the WO_x/C networks, and then the appearance of MB on the surface of the WO_x/C networks would offer additional nitrogen and sulfur-containing groups, which might provide new active sites for capturing Pb²⁺. However, the removal of dyes was not enhanced by the presence of Pb²⁺ for binary systems at similar conditions. One reasonable explanation could be due to that the presence of Pb²⁺ on the surface of the WO_x/C networks could not provide extra active sites for the removal of dyes, leading to the competition for the available removal sites.

Figure S6. The removal of Pb^{2+} and MB on the WO_x/C networks using binary solutions.

Figure S7. FTIR spectra of WO_x/C before and after MB adsorption.

Figure S8. FTIR spectra of WO_x/C before and after Pb^{2+} adsorption.

Figure S9. XRD patterns of WO_x/C before and after Pb^{2+} adsorption.

1	1					1		
Adsorbents	Adsorbate	q _{e,exp} mg∕g	Pseudo-first-order			Pseudo-second-order		
			K_{I}	$q_{e,call}$	R^2	K_2	$q_{e,cal2}$	<i>R</i> ²
			min ⁻¹	mg/g	π	g/mg/min	mg/g	
WO _x	Pb ²⁺	570.64	2.29	604.73	0.997	3.27×10-5	561.07	0.992
	MB	469.57	2.34	500.11	0.998	2.33×10-5	465.84	0.992
WO _x /C	Pb ²⁺	773.19	4.86	782.19	0.999	1.31×10-4	768.95	0.997
	MB	618.24	5.21	627.85	0.998	9.86×10 ⁻⁵	617.57	0.998

Table S1. Parameters for the kinetic adsorption data fitted by pseudo-first-order and pseudo-second-order models.

Table S2. Parameters of Langmuir and Freundlich models for adsorption of Pb^{2+} and

Adsorbents	Adsorbate	Langmuir	isotherm co	onstants	Freundlich isotherm constants			
		q_m mg/g	<i>K_L</i> L/min	<i>R</i> ²	K_F mg ^{1-1/n} /L ^{1/n} /g	1/n	<i>R</i> ²	
WO _x	Pb ²⁺	628.88	0.12	0.984	39.19	0.23	0.917	
	MB	562.17	0.17	0.944	77.51	0.21	0.951	
WO _x /C	Pb ²⁺	1078.83	0.14	0.823	61.55	0.27	0.961	
	MB	1301.21	0.06	0.825	85.16	0.36	0.959	