1 Electronic Supplementary Information for

² Electrospun flexible self-standing Cu-Al₂O₃ fibrous membranes as

3 Fenton catalysts for bisphenol A degradation

- 4 Yan Wang^a, Jiang Li^{a, b}, Jianyang Sun^a, Yanbin Wang^a, Xu Zhao^{*a, c}
- 5 a, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-6 Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China.
- 7 b, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian
 8 116034, P. R. China
- 9 c, University of Chinese Academy of Sciences, Beijing, P.R. China.

10

11

Fig. S1 (A) SEM image and (B) TG-DSC curves of the 5 wt% Cu–Al₂O₃ xerogel fibrous membranes

14

15 Fig. S2 SEM images of Cu-Al₂O₃ membranes. (A-D) Cu-Al₂O₃-600 membranes with various Cu

16 content (A) 1 wt%, (B) 3 wt%, (C) 5 wt%, (D) 7 wt%; (E-F) 5 wt% Cu-Al₂O₃ membranes calcined

17 at various temperatures (E) 700 °C, (F) 800 °C.

Fig. S3 EDS of 5 wt% Cu-Al₂O₃-600 membranes.

1

4 Fig. S4 XPS analysis of the 5 wt% Cu-Al₂O₃-800 membrane, (A) XPS survey (B) Cu 2p and

5 (C) Al 2p spectra.

6

3

7 Fig. S5 The influence of H_2O_2 dosage on the BPA degradation by the 5 wt% Cu-Al₂O₃-600 8 membrane. Conditions: [BPA] = 20 mg/L, initial pH 7.

9

- 2 Fig. S6 (A) low magnification and (B) high magnification SEM images of the membrane after the
- 3 continuous degradation reactions.

6 Fig. S7 XPS analysis of the 5% $Cu-Al_2O_3-600$ membrane after use, (A) XPS survey (B) Cu 2p and

- 7 (C) Al 2p spectra.

Table. S1 Average fiber diameter of various Cu-Al₂O₃ samples

Sample	Average fiber diameter	Sample	Average fiber diameter
	(nm)		(nm)
1 wt% -600 °C	390	7 wt% -600 °C	320
3 wt% -600 °C	360	5 wt% -700 °C	270
5 wt% -600 °C	340	5 wt% -800 °C	190

Table. S2 Elemental composition of 5 wt% Cu-Al₂O₃-600 membranes.

Elements	Intensity (c/s)	Atomic (%)	Concentration (wt.%)
0	173.45	57.856	42.88
Al	600.93	37.173	46.47
Cu	32.47	2.237	6.59
S	46.81	2.735	4.06
Total		100.00	100.00

Table S3 The BET surface areas and porosity of the samples

Samples	BET surface area	Pore width	Pore volume
	$(m^2 g^{-1})$	(nm)	(cc g ⁻¹)
1 wt% Cu-Al ₂ O ₃ -600	12.33	5.75	0.01930
3 wt% Cu-Al ₂ O ₃ -600	9.26	6.22	0.01175
5 wt% Cu-Al ₂ O ₃ -600	10.10	5.92	0.01588
7 wt% Cu-Al ₂ O ₃ -600	8.11	5.19	0.01278
5 wt% Cu-Al ₂ O ₃ -700	40.56	5.44	0.07532
5 wt% Cu-Al ₂ O ₃ -800	38.63	5.51	0.07347

Table S4 Results of Fenton-like degradation of BPA based on various Cu-based catalysts

Catalyst	morphology	BPA initial conc. (ppm)	H_2O_2 initial concentration (mM)	Removal ability	Ref.
copper–aluminum– silica	nanospheres	23	10	98.3% within 60 min	[1]
Mesoporous γ -Cu-Al ₂ O ₃	powders	23	10	100% within 180 min	[2]
Mesoporous Cu/TUD-1	powders	100	90	90.4% within 180 min	[3]
1 wt% Cu- Al ₂ O ₃ -600 °C	membranes	20	12	87% within 180 min	This work
5 wt% Cu- Al ₂ O ₃ -800 °C	membranes	20	12	85% within 60 min	This work

8 Reaction conditions: catalyst concentration 1.0 g L⁻¹, Intial pH 7 (except for Mesoporous Cu/TUD-1, Initial pH 3.5).

Products	Structure	m/z
BPA	HO	227
P1	ro-⟨or of	242
P2	но-СЭ-СОО-СН-ОН	247
Р3	но-	135
P4	-o-<	133
Р5	но	94
P6	HOOC-CH ₂ -CH ₂ -COO ⁻	117
P7	HOOC-CH=CH-COO-	115
P8	О Н-С-СН=СН-СОО ⁻	99
Р9	он _ -оос-сн-сн₃	89

Table S5 Identification of the intermediates by UPLC-Q-TOF-MS.

1	
2	

3

4

The XPS spectra of the 5 wt% Cu-Al₂O₃ membrane calcined at 800 °C was shown in Fig. S4. In the XPS survey spectrum, the peaks of Al, O, Cu, and C elements are observed, while the peaks of S element are absence. The results indicate that SO_4^{2-} is totally removed when the membrane calcined at 800 °C. In the Cu 2p and Al 2p XPS spectra, both of Cu⁺ (933.1 eV), Cu²⁺ (935.1 eV) and Al-O-Al (74.1 eV), Al-O-Cu (75.1 eV) are observed. The shakeup satellite line at 941.5 and 944.0 eV in Cu $2p_{3/2}$ spectra correspond to Cu^{2+.4} The auger kinetic energy at 915.3 eV in AES spectra confirmed the 1 existence of Cu⁺, and 77.6 eV in Al 2p spectra was assigned to Al^{3+.5}

2

The details of the methods for preparing Cu-Al₂O₃ catalysts are discussed as follows: In the 3 literature, the Cu-Al₂O₃ catalyst is usually prepared by a two-step procedure.^{6,7} Specifically, the first 4 step is the preparation of Al₂O₃ powder through evaporation-induced self-assembly method, which is 5 used as the catalyst support; in the second step, the Cu-Al₂O₃ powder catalyst is prepared by 6 immersing Al₂O₃ powder in to the copper precursor such as Cu(NO₃)₂·3H₂O, which is called 7 impregnation method, and it is usually followed by a calcination procedure. The two-step preparation 8 method usually resulted in the powder form catalyst, and the Cu catalyst is easy to drop off from the 9 Al₂O₃ support. 10

In some research, the Cu-Al₂O₃ catalyst is prepared by a one-step procedure via the evaporation-induced self-assembly method followed by a calcination procedure.² This method could obtain the Cu-Al₂O₃ catalyst with Al-O-Cu bond, which could decrease the Cu leaching during use. However, the Cu-Al₂O₃ catalyst obtained by this method is still in powder form, and evaporationinduced self-assembly method usually need a long time to evaporate the solvents.

In this paper, the Cu-Al₂O₃ catalyst is prepared by a one-step procedure via electrospinning method. The copper is dissolved in the alumina precursor, and the Cu-Al₂O₃ membrane catalyst could be directly obtained via the electrospinning process followed by a calcination procedure. During the electrospinning process, the solvent evaporate rapidly, leading to the immediately formation of Cu-Al₂O₃ nanofibers with uniformly distributed Al-O-Cu bond in the fibers. The high aspect ratio of the nanofibers is good for the formation of flexible Cu-Al₂O₃ membranes.

- 22
- 23

Because the H₂O₂ dosage is a key factor that influence the Fenton reaction,² the reaction was 24 optimized by varying the H₂O₂ dosage. As shown in Fig. S5, the removal percentages of BPA within 25 3 h were 3%, 32%, 58%, 64%, 75%, 84% and 67% when the H₂O₂ dosages were 0, 2, 5, 8, 10, 12 26 and 15 mM, respectively. The degradation rate increased when the H₂O₂ dosages increased from 0-27 12 mM, because •OH is generated by the H₂O₂ precursor. However, the degradation rate decreased 28 when the H₂O₂ dosages increased from 12 mM to 15 mM, and this is supposed to be caused by the 29 scavenging effect of •OH by excess H₂O₂.² Therefore, 12 mM was the optimal H₂O₂ dosage in this 30 reaction. 31

32

33

The leaching percentages of Cu and Al in the membranes are calculated. The computation process is as follows: for the 1 wt% Cu-Al₂O₃, the amount of Cu in 10 mg membrane is 0.1 mg; After reaction, Cu leaching is 0.151 mg L⁻¹, the reaction solution is 10 mL, thus the amount of Cu leaching is 0.151 mg/L*0.01 L=0.00151 mg; the percentage of Cu leaching is 0.00151/0.1=1.51% for the 1 wt% Cu-Al₂O₃ membrane. Hence, for 1, 3, 5, 7 wt% Cu-Al₂O₃ membranes, the Cu leaching percentages are respectively 1.51%, 0.43%, 0.64%, 0.61%, and the Al leaching percentages are all remained 0.02%.

- 9
- 10

Fig. S7 presents the XPS results of the $Cu-Al_2O_3-600$ membrane after use. It can be seen that the peaks of the main elements of the membranes including Al, O, and Cu are observed in the XPS survey spectrum. From the Cu 2p and Al 2p spectra, it can be seen that the peaks of the Cu⁺ (933.1 and 914.6 eV), Cu²⁺ (935.1 and 942.8 eV), Al-O-Al (74.2 eV) and Al-O-Cu (75.3 eV) are all exhibited.

- 16
- 17

The intermediates of BPA degradation were identified by UPLC-Q-TOF-MS. As shown in Table S5, there were nine intermediates (formulated from P1 to P9) besides BPA itself. The P1 (m/z 20 242), P2 (m/z 247), P3 (m/z 135), P4 (m/z 133), and P5 (m/z 94) were identified to be the intermediates that still possess aromatic ring; The P6 (m/z 117), P7 (m/z 115), P8 (m/z 99), and P9 22 (m/z 89) were identified to be the intermediates that after the ring-opening reactions. These 33 intermediates were generally in agreement with those in previous reports.^{8,9}

24

25

26 References

- 27 [1] L. Lyu, L. Zhang, C. Hu, M. Yang, J. Mater. Chem. A 2016, 4, 8610-8619.
- 28 [2] L. Lyu, L. Zhang, Q. Wang, Y. Nie and C. Hu, Environ. Sci. Technol., 2015, 49, 8639-8647.
- M. P. Pachamuthu, S. Karthikeyan, R. Maheswari, A. F. Lee and A. Ramanathan, *Appl. Surf. Sci.* 2017, **393**, 67-73.
- 31 [4] F. Parmigiani, G. Pacchioni, F. Illas, P.S. Bagus, J Electron Spectrosc. 1992, 592, 55-269.
- 32 [5] J.R. Lindsay, H.J. Rose, W.E. Swartz, P.H. Watts, K.A. Rayburn, Appl. Spectrosc. 1973, 27, 1-5.
- [6] L. Li, W. Han, F. Dong, L. Zong, Z. Tang and J. Zhang, *Micropor. Mesopor. Mater.*, 2017, 249,
 1-9.

- [7] I. Obregón, I. Gandarias, A. Ocio, I. García-García, N. Alvarez de Eulate and P. L. Arias, *Appl. Catal. B-Environ.*, 2017, 210, 328-341.
- 3 [8] J. Sharma, I. M. Mishra, D. D. Dionysiou and V. Kumar, Chem. Eng. J., 2015, 276, 193-204.
- 4 [9] J. Zhang, B. Sun and X. Guan, Sep. Purif. Technol., 2013, 107, 48-53.