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Figure S2. SEM images of (a) NiS,, (b) NiggeFeo.14S, and (c) Nig sgFeg 42S,. Scale bars:

(a) 10 um; (b) and (c) 1 pm.
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Figure S3. Pore size distribution (DFT model) of Nigy;Fe(3S,. Inset shows the N,

adsorption-desorption isotherm.

After OER

Intensity (a.u.)

S

20 30 40

60 70

20 (%)

Figure S4. XRD pattern for Nij;Feq3S, after OER test.
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Figure S5. SEM images of Nij ;Fe(3S; after chronopotentiometric measurements of

OER. Scale bar: 2 pm.
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Figure S6. XPS spectra (a) in the S (2p) region, (b) in the O (1s) region, (c) in the Ni
(2p) region and (d) in the Fe (2p) region of Nig;Fe(3S, after OER test.
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Figure S7. Cyclic voltammetry (CV) curves of (a) NigsFe(3S,, (c) NiS; and (e) NiFe
LDH tested at various scan rates from 20 to 100 mV s-!. Scan rate dependence of the

current densities of (b) NigsFe(3S,, (d) NiS, and (f) NiFe LDH at 0.97 V vs RHE.
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Figure S8. EIS spectra of NiFe,_,S,, NiS, and NiFe LDH.
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Table S1 The actual Ni/Fe atomic ratios of different added

Ni(NOj3),-6H,0/FeSO,- 7H,0 ratios determined by ICP-AES.

Feed ratios Ni (Atomic%) Fe (Atomic%)

x=0.25 27.9 27.2
x=0.5 38.9 222
x=0.75 54.7 11.6
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Table S2 Comparison of OER catalytic performance with other sulfides and non-

noble metal based catalysts.

Current Density

Overpotential

Materials (mA cm?) mV) Reference
10 198
20 212 )
Nig-Feo S, 50 245 This work

100 287

200 360
Nij 30,-C0S,/CC 100 370 [1]
CopsFepsS@N-MC 10 410 [2]
NiS/Ni foam 50 335 [3]

Ni-Fe

disulfide@oxyhydroxide 10 230 4]
Fe-Ni3S,/FeNi 10 282 [5]
NiCo,S4 NA/CC 100 340 [6]
Ni-Co-S/CF 100 363 [7]
MoO,/Ni3S, composite 200 373 [8]
CoNi-P-NS /NF 10 209 [9]
(Ni, Co)p ssSe@NiCo-LDH 10 216 [10]
Coo.13Nig g7Sey/Ti 100 320 [11]
NiCoP 50 308 [12]
Sandwiched NiFe/C arrays 20 220 [13]
NiFe/RGO 10 245 [14]
FeNi-O 10 213 [15]
NiFe LDH 10 240 [16]
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Table S3 Comparison of HER catalytic performance with other sulfides and non-

noble metal based catalysts.

Current Density

Overpotential

Materials (mA cm?) mV) Reference

Nig7Feq3S, 10 155 This work
NiCo,S4 NA/CC 10 ~190 [6]
Fey 1-NiS; NA/Ti 10 ~250 [17]
Ni,P/NiOy 10 220 [18]
EG/CogsSe/NiFe-LDH 10 260 [19]
Co9Sg-Ni,S,/Ni foam 10 163 [20]
Ni;S,/AT-Ni 10 200 [21]
CoP 10 209 [22]
NiFe LDH/NF 10 210 [16]
NiCoP/rGO 10 209 [23]
CopsFepsS@N-MC 10 410 [2]
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Table S4 Comparison of catalytic performance for water splitting with other sulfides

and non-noble metal based catalysts.

Materials Cuz;fztcll)rlfil;)SIty Cell (\;(f))ltage Reference

Nig7Feo3S, ;8 i 3?? This work
Ni-Co-S/CF 10 1.67 [7]
NiS/Ni foam 10 1.64 [3]
NiSe/Ni foam 10 1.63 [24]
Co-P/Cu foil 10 1.65 [25]
NiCo,S4; NA/CC 10 1.68 [6]
NiCoP 50 1.77 [12]
Ni,P/NiOy 10 1.63 [18]
NiCoP 10 1.64 [26]
EG/CoqgsSe/NiFe-LDH 10 1.67 [19]
NiCo0,04 10 1.65 [27]
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