Supporting information

P2-Type Transition Metal Oxides for High Performance Na-Ion Battery Cathodes

Chao Luo, Alex Langrock, Xiulin Fan, Yujia Liang, Chunsheng Wang*

Affiliation: Department of Chemical & Biomolecular Engineering, University of Maryland College Park, MD 20742, USA.

*Corresponding author: Prof. Chunsheng Wang

Email: <u>cswang@umd.edu</u>

Figure S1. SEM images of Na_{0.67}Ni_{0.33}Mn_{0.67}O₂ particles prepared by USP before (a) and after (b)

heat treatment.

Figure S2. TEM image and EDS mapping of $Na_{0.67}MnO_2$ particles after heat treatment.

Figure S3. TEM image and EDS mapping of $Na_{0.67}Mn_{0.65}Fe_{0.20}Ni_{0.15}O_2$ particles after heat treatment.

Figure S4. XRD full-pattern fitting of Na_{0.67}Ni_{0.33}Mn_{0.67}O₂ sample after heat treatment.

Figure S5. Cyclic voltammograms of $Na_{0.67}Ni_{0.33}Mn_{0.67}O_2$ scanned between 2.0–3.8 V at a rate of 0.1 mV/s.

Figure S6. Galvanostatic charge/discharge curves of $Na_{0.67}MnO_2$ in narrow (a) and expanded (b) cutoff window; Galvanostatic charge/discharge curves of $Na_{0.67}Fe_{0.20}Ni_{0.15}Mn_{0.65}O_2$ in narrow (c) and expanded (d) cutoff window.

Figure S7. Galvanostatic charge/discharge curves of Na_{0.67}Ni_{0.33}Mn_{0.67}O₂ cell cycled at 0.1 C.

Figure S8. Capacity retention of $Na_{0.67}Ni_{0.33}Mn_{0.67}O_2$ cycled at 0.1 C in various voltage windows.

Figure S9. High resolution TEM image for the thin layer of Al₂O₃ on Na_{0.67}MnO₂ electrode.

Figure S10. Impedance analysis for $Na_{0.67}MnO_2$ electrode and Al_2O_3 - $Na_{0.67}MnO_2$ electrode.