Supporting Information

Comparison of the Polymorphs of VOPO₄ as Multi-Electron Cathodes for Rechargeable Alkali-Ion Batteries

Yuh-Chieh Lin[†], Marc F. V. Hidalgo[‡], Iek-Heng Chu[†], Natasha A. Chernova[‡], M Stanley Whittingham^{*,‡}, Shyue Ping Ong^{*,†}

 [†] Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive # 0448, La Jolla, CA 92093, USA.
[‡]NECCES, Binghamton University, Binghamton, New York 13902, United States *Email: stanwhit@gmail.com, ongsp@eng.ucsd.edu

Figure S1. XRD patterns for all LiVOPO₄ polymorphs synthesized in this work.

Figure S2. Pseudo-binary phase diagram for A_x VOPO₄ (A=Li and Na) polymorphs. The red squares and blue circles denote unstable and stable structures, respectively. The black line is the convex hull.

Figure S3. Galvanostatic charge-discharge curves for different LiVOPO₄ polymorphs at a charge-discharge rate of C/10.

Figure S4. SEM images of (left to right) β -, ϵ , and α_I --LiVOPO₄ after ball-milling. Scale bars are 200 nm.

Figure S5. Current vs $v^{1/2}$ plots for the high-voltage transformation in (a) α_{I} -, (b) β -, and (c) ε -LiVOPO₄.

 β -LiVOPO₄ + v_{Li^+}

 β -NaVOPO₄+ v_{Na+}

 $\underline{\alpha_l}$ -NaVOPO₄+ v_{Na+}

516 meV

0.4 0.6 0.8 Reaction coordinate

А→В

1.0

500

100

0.0

0.2

Figure S6. Calculated CI-NEB migration barriers in A_x VOPO₄ polymorphs (A=Li and Na; x=0 and 1). The labels are associated with those in Table S1.

Table S1. The CI-NEB migration barriers and the associated local environment information in A_x VOPO₄. A* stands for the alkali-ion in the transition state of a migration path. The minimum distances from A* to oxygen, vanadium and phosphorus are abbreviated as Min A*-O, Min A*-V and Min A*-P, respectively.

A _x VOPO ₄	Path	Barrier	Min	Min	Min
(x = 0, 1)		(meV)	A*-O (Å)	A*-V (Å)	A*-P (Å)
β -LiVOPO ₄ + v_{Li+}	А→В	239	1.869	2.887	2.635
β -VOPO ₄ + Li ⁺	А→В	255	1.878	2.993	2.629
<i>ɛ</i> -LiVOPO ₄ + <i>v</i> _{Li+}	А→В	244	1.826	2.874	3.076
	В→С	214	1.998	2.571	3.239
	D→E	600	1.803	2.593	3.063
	E→F	156	1.876	2.968	2.883
	A→G	815	1.899	2.819	2.441
	А→Н	1199	1.931	3.415	2.295
<i>ε</i> -VOPO₄ + Li ⁺	А→В	271	1.853	2.870	2.703
	А→С	637	1.945	2.672	2.563
	A→D	629	1.803	2.619	2.226
α_l -LiVOPO ₄ + v_{Li+}	А→В	728	1.868	2.969	2.555
	А→С	762	1.856	2.943	2.484
	A→D	449	1.827	3.060	2.468
	А→Е	328	1.802	3.176	2.473
α_{l} -VOPO ₄ +Li ⁺	А→В	276	1.856	3.119	2.619
	А→С	282	1.856	3.105	2.623
	A→D	284	1.855	3.095	2.629
β -NaVOPO ₄ + v_{Na^+}	А→В	346	2.111	3.211	2.699
β -VOPO ₄ + Na ⁺	А→В	541	2.131	3.117	2.683

ε -NaVOPO ₄ + v_{Na^+}	А→В	1039	2.013	2.938	3.156
	в→с	1547	1.999	2.720	3.140
	B→D	1431	2.056	3.314	2.512
<i>ɛ</i> -VOPO ₄ + Na ⁺	А→В	516	2.062	3.051	2.922
	А→С	674	2.155	2.981	2.648
	A→D	694	2.156	3.233	2.648
α_{l} -NaVOPO ₄ + v_{Na+}	А→В	263	2.166	3.523	2.988
	А→С	1409	2.045	2.560	4.023
	A→D	565	2.152	3.217	2.865
α_l -NaVOPO ₄ *+ v_{Na+}	А→В	651	2.198	3.030	2.818
	А→С	548	2.195	3.004	2.762
	A→D	261	2.163	3.312	2.819
	А→Е	123	3.637	2.176	2.940
α_l -VOPO ₄ + Na ⁺	А→В	438	2.176	3.754	2.744
	А→С	2308	1.889	2.257	3.886
	A→D	427	2.112	3.430	2.743

(a) β -A_xVOPO₄

5 Energies (eV)

-30 E-NaVOPO4

Density of states 10

-20

(b) \mathcal{E} -A_xVOPO₄

(c) α_{I} -A_xVOPO₄

Figure S7. Calculated hybrid HSE density of states of A_x VOPO₄ polymorphs (A=Li and Na; x=0, 1, 2). The computed band gaps are also labeled in the each of the sub-figures.