Electronic Supplementary Information

Formamidinium-methylammonium lead iodide perovskite single crystal

exhibits exceptional optoelectronic properties and long-term stability

Wen-Guang Li, Hua-Shang Rao, Bai-Xue Chen, Xu-Dong Wang and Dai-Bin Kuang*

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China.

* Corresponding author

Fax: (+86) 20-84113015

Email: kuangdb@mail.sysu.edu.cn

Fig. S1 ¹H NMR spectra of MAPbI₃, FAPbI₃, and the mixed cation perovskite single crystals.

Fig. S2 Temperature-dependent XRD patterns of (a) $FAPbI_3$, (b) $MAPbI_3$, and (c) $MA_{0.45}FA_{0.55}PbI_3$ single crystals ground to powder.

Fig. S3 TGA curves (a) and their corresponding first derivative curves (b) of MAPbI₃, FAPbI₃, and MA_{0.45}FA_{0.55}PbI₃ single crystals ground to powder.

Fig. S4 (a) UV-vis-NIR absorption spectra and (b) Tauc plots to extract the optical bandgaps of MAPbI₃, FAPbI₃ and MA_{0.45}FA_{0.55}PbI₃ single crystals.

Fig. S5 Photoluminescence spectra of MAPbI₃, FAPbI₃ and MA_{0.45}FA_{0.55}PbI₃ single crystals.

Fig. S6 The powder XRD spectra of the $MA_xFA_{1-x}PbI_3$ single crystals with x = 0, 0.14, 0.45, 0.77, 1.0.

Fig. S7 Time-resolved photoluminescence spectra of the $MA_xFA_{1-x}PbI_3$ single crystals with x = 0, 0.14, 0.45, 0.77, 1.0.

Fig. S8 The frequency dependent capacitance curve for the MA_{0.45}FA_{0.55}PbI₃ single crystal.

Fig. S9 *I/V*²-*V* plots of the dark *I-V* curves in Child's region. (a) MA_{0.45}FA_{0.55}PbI₃, (b) MAPbI₃ and (c) FAPbI₃ single crystal.

Fig. S10 Dark current and photocurrent curves of the (a) $MA_{0.45}FA_{0.55}PbI_3$, (b) $MAPbI_3$ and (c) $FAPbI_3$ single-crystal photodetectors and the same devices after stored in an opaque desiccator (RH ~10 %) for 4 months. The photocurrent was measured under illumination of ~20 μ W cm⁻² from 870 nm LED.

	τ_1/ns	Rel/%	τ_2/ns	Rel/%	$ au_{total}/ns$
MAPbI ₃	70	15%	1053	85%	906
MA _{0.77} FA _{0.23} PbI ₃	51	4%	1162	96%	1118
MA _{0.45} FA _{0.55} PbI ₃	124	4%	2205	96%	2122
MA _{0.14} FA _{0.86} PbI ₃	61	12%	1122	88%	995
FAPbI ₃	131	6%	1714	94%	1619

Table S1 Fluorescence lifetime and corresponding intensities derived from the fitting results of the photoluminescence decay curves.

Table S2 The properties comparison of MA_xFA_{1-x}PbI₃ single crystals with literatures.

	1.	$\mu (cm^2 s^{-1} V^{-1})$	$n_{\rm c}$ (cm ⁻³)	$n_{\rm t}$ (cm ⁻³)	τ (µs) (from PL)	τ _{1 SUN} (μs) (from TPV)	$L_{\rm D}$ (µm) (from PL)	<i>L</i> _D (μm) (from TPV)	reference
MAPbI ₃	1 × 10 ⁻⁸	2.5	$2 imes 10^{10}$	$\begin{array}{c} 3.3\pm0.3\times\\10^{10}\end{array}$	0.022, 1.032	-	2, 8	-	<i>Science</i> , 2015, 347 , 519-522
MAPbI ₃	-	164 ± 25	$9\pm2\times10^9$	$3.6 imes 10^{10}$	-	82 ± 5	-	175 ± 25	Science, 2015, 347 , 967-970.
MAPbI ₃	-	167 ± 35	-	$\begin{array}{c} 1.80 \pm 1.07 \times \\ 10^9 \end{array}$	-	-	-	-	J. Am. Chem. Soc., 2016, 138 , 9409- 9412.
MAPbI ₃	-	39.6	-	$6.0 imes 10^8$	-	-	-	-	<i>Adv. Mater.</i> , 2016, 28 , 9204-9209
α-FAPbI ₃	1.1 × 10-7	4.4	$1.5 imes 10^{11}$	6.2 × 10 ¹¹	0.032, 0.484		0.5, 2.2	-	<i>Adv. Mater.</i> , 2016, 28 , 2253-2258
α-FAPbI ₃	2.2 × 10 ⁻⁸	35 ± 7	3.9 × 10 ⁹	1.1×10^{10}	0.032, 0.484	-	1.7, 6.6	-	ACS Energy Lett., 2016, 1 , 32-37
α-FAPbI ₃	1.8 × 10 ⁻⁸	40 ± 5	$2.8 imes 10^9$	1.34×10^{10}	-	-	-	-	Adv. Optical Mater., 2016, 4 , 1829-1837
MAPbI ₃	$1.1 imes 10^{-8}$	65 ± 6	1.0 × 10 ⁹	1.1×10^{10}	0.070, 0.906	80	3.4, 12.3	115	Present work
α-FAPbI ₃	2.2 × 10 ⁻⁸	150 ± 15	$9.5 imes 10^8$	8.2×10^9	0.131, 1.619	37	7.1, 25.0	118	Present work
MA _{0.45} FA _{0.55} PbI ₃	1.7 × 10 ⁻⁷	271 ± 60	3.9 × 10 ⁹	2.6 × 10 ⁹	0.124, 2.122	93	9.29, 38.4	254	Present work