Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Electronic supplementary information

In-situ Preparation of Binder-Free Nano-Cotton-Like CuO-Cu Integrative Anode on Current Collector by Laser Ablation Oxidation for Long Cycle Life Li-ion Batteries

Peng Liang ^a, Hongjun Zhang ^b, Yibo Su ^a, Zeya Huang ^b, Chang-An Wang ^{*a}, Minlin

Zhong *b

^a State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, 10084, Beijing, China

^b Laser Materials Processing Research Centre, School of Materials Science and

Engineering, Tsinghua University, 100084, Beijing, China

*Corresponding Author: Wang Chang-An

2418, School of Materials Science and Engineering, Tsinghua University, Beijing,

China,100084

Tel.: +86 01062785645 (Wang Chang-An)

E-mail address: wangca@mail.tsinghua.edu.cn

*Corresponding Author: Minlin Zhong

Laser Materials Processing Research Centre, School of Materials Science and Engineering, Tsinghua University, Beijing, China, 100084,

E-mail address: zhml@tsinghua.edu.cn

Fig S1. EDS of CuO-Cu integrative anode

Fig S2. SEM image of a 1 mm by 1 mm laser ablated copper foil with the laser scanning speed of 10 mm s⁻¹ (a), 15 mm s⁻¹ (b), 30 mm s⁻¹ (c), 50 mm s⁻¹ (d), 100 mm s⁻¹ (e), 200 mm s⁻¹ (f).

Methods	Current density (A g ⁻¹)	Cyclability	Reversible capacity (mAh g ⁻¹)	Ref.
Laser ablation	0.8	500	528.9	Our work
	1.5	800	393.4	
Dehydration and re-crystallization of precursor	0.5C	50	374	[1]
Annealing and microwave-assisted process	0.5	250	500	[2]
Liquid method	0.1C	55	421	[3]
Electrochemical oxidation	1.0	100	376.1	[4]
Calcination and Liquid method	0.1C	50	429	[5]
Heated oxidation	0.1	50	193.9	[6]
Aerosol spray pyrolysis method	50C	300	400	[7]
Rapid hydrothermal method	0.1C	100	575	[8]
Glutamine (GLN)-assisted green strategy	0.1	50	683.7	[9]
Hydrothermal method	1.0C	70	279.3	[10]

 Table S1

 Comparisons of the cycling performance among other CuO anodes.

References:

1 J. Y. Xiang, J. P. Tu, L. Zhang, Y. Zhou, X. L. Wang and S. J. Shi, J. Power Sources, 2010, **195**, 313.

2 S. Xiao, D. Pan, L. Wang, Z. Zhang, Z. Lyu, W. Dong and H. Li, Nanoscale, 2016, **8**, 19343.

3 C. Wang, Q. Li, F. Wang, G. Xia, R. Liu, D. Li and G. Wu, ACS Appl. Mater. Interfaces, 2014, 6, 1243.

4 W. Yang, J. Wang and W. Ma, Journal of Power Sources, 2016, 333, 88.

5 C. Wang, D. Higgins, F. Wang, D. Li, R. Liu, G. Xia and G. Wu, Nano Energy, 2014, 9, 334.

6 K. Chen, S. Song and D. Xue, CrystEng. Comm, 2013, 15, 144.

7 Y. Xu, G. Jian, M. R. Zachariah and C. Wang, Journal of Materials Chemistry A, 2013, 1, 15486.

8 P. Subalakshmi, A. Sivashanmugam. Journal of Alloys and Compounds, 2017, 690, 523.

9 J. Wang, Y. Liu, S. Wang, X. Guo and Y. Liu, Journal of Materials Chemistry A, 2014, **2**, 1224.

10 S. Mohapatra, S. V. Nair, D. Santhanagopalan and A. K. Rai, Electrochimica Acta, 2016, **206**, 217.