Journal Name

SUPPORTING INFORMATION

Structural Lithium Ion Battery Electrolytes via Reaction Induced Phase-Separation

Received 00th January 20xx, Accepted 00th January 20xx N. Ihrner^a, W. Johannisson^b, F. Sieland^c, D. Zenkert^b and M. Johansson^a⁺

DOI: 10.1039/x0xx00000x

www.rsc.org/

1

^{a.} Department of Fibre and Polymer Technology, School of Chemical Sciences and Engineering, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.

^{b.} Department of Aeronautical and Vehicle Engineering, School of Engineering

Sciences, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden. • University of Paderborn, Faculty of Science, Department of Chemistry, Warburger

Straße 100, 33098 Paderborn, Germany.

Table S1 Hansen solubility parameters (HSP) and densities for in-going components in the SBE's.

Substance	δ_{D} (MPa ^{0.5})*	$\delta_{ m P}$ (MPa ^{0.5})*	$\delta_{ m H}$ (MPa ^{0.5})*	ρ (g cm-3)
Ethylene carbonate (EC)	18.0	21.7	5.1	1.321
Dimethyl methylphosphonate (DMMP)	16.7	13.1	7.5	1.145
Bisphenol A dimethacrylate (A)	18.4	3.3	3.4	-
Bisphenol A ethoxylate dimethacrylate (B)	17.0	3.7	5.2	-

*Values taken from software by, S. Abbot, C. M. Hansen, H. Yamamoto, Hansen Solubility Parameters in Practice, 3rd edn., 2013.

Fig. S1 FT-IR spectra of liquid electrolyte (1 M LiTFS in (EC:DMMP)) (blue), A/0.60, after curing (red), after washing and drying (black).

Fig. S2 FT-IR spectra of liquid electrolyte (1 M LiTFS in (EC:DMMP)) (blue), AB/0.60, after curing (red), after washing and drying (black).

Fig. S3 FT-IR spectra of liquid electrolyte (1 M LiTFS in (EC:DMMP)) (blue), B/0.60, after curing (red), after washing and drying (black).

Fig. S5 FT-IR spectra of liquid electrolyte (1 M LiTFS in (EC:DMMP)) (blue), AB/0.65, after curing (red), after washing and drying (black).

Fig. S7 Ionic conductivity σ (logarithmic scale) as a function of temperature for sample A/0.65 (red), AB/0.65 (blue) and B/0.65 (grey).

Fig. S8 Lithiation and delithiation capacity as a function of cycles for a carbon fiber lamina half-cell cycled at a C/5 for 49 cycles. AB/0.65 was used as a matrix.