Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Template-engineered epitaxial BiVO₄ photoanodes for efficient solar water splitting

Jaesun Song,‡^a Jaeseoung Cha,‡^a Mi Gyoung Lee,^b Hye Won Jeong,^d Sehun Seo,^a Ji Ae Yoo,^a Taemin Ludvic Kim,^b Jongmin Lee,^a Heesung No,^a Do Hyun Kim,^c Sang Yun Jeong,^a Hyunji An,^a Byoung Hun Lee,^a Chung Wung Bark,^c Hyunwoong Park,^d Ho Won Jang,^b Sanghan Lee^{*,a}

a. School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea, E-mail: sanghan@gist.ac.kr

b. Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea

c. Department of Electrical Engineering Gachon University, Seongnam, 13120, Republic of Korea

d. School of Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea

*Corresponding authors: sanghan@gist.ac.kr

Supporting figures

Figure S1. Out-of-plane θ - 2θ XRD patterns for (a) bare BiVO₄ with various thicknesses, (b) bare γ -WO₃ with various thicknesses, (c) epitaxial BiVO₄ on the γ -WO₃ template layer of various thicknesses grown on the SRO-buffered STO (001) substrate.

Supporting figures

Figure S2. AFM surface morphology image of (a) STO (001) substrate, (b) 50-nm-thick SRO on STO (001) substrate.

Supporting figures

Figure S3. Top-view SEM images of epitaxial $BiVO_4$ on the (a) 30-nm, (b) 100-nm, (c) 200-nm-thick γ -WO₃ template layer grown on the SRO-buffered STO (001) substrate.

Figure S4. Linear sweep voltammetry curves (LSVs) of (a) bare BiVO₄ with various thicknesses, (b) bare γ -WO₃ with various thicknesses under the illumination of a solar simulator (AM 1.5G, 100 mW cm⁻²) in 0.5 M Na₂SO₄ with 0.5 M Na₂SO₃ aqueous solution. Insets show the plot of photocurrent density at 1.23 V *vs.* RHE of bare BiVO₄ and bare γ -WO₃ with various thicknesses.

Figure S5. O_2 evolution (left *y*-axis) and faradaic efficiency (right *y*-axis) of 100-nm-thick BiVO₄ on the 30-nm-thick γ -WO₃ template on the SRO-buffered STO (001) substrate measured at 1.23 V *vs.* RHE in 0.1 M Na₂SO₄ electrolyte under simulated AM 1.5G illumination.

Table S1. Photocurrent densities of polycrystalline BiVO₄-based heterojunction photoelectrodes for PEC water splitting reported recently. (PADD: polymer-assisted direct deposition, GLAD: glancing angle deposition, ED: electrodeposition)

Year	Photoelectrode	Electrolyte	Performance	Method	Ref.
2015	Co-Ci/BiVO ₄ /WO ₃	0.1 M KHCO3	~3.50 mA cm ⁻² at 1.23 V <i>vs.</i> RHE	PADD	S1
2016	BiVO ₄ /WO ₃ /SnO ₂	0.5 M Na ₂ SO ₄ in a 0.1 M NaPi with 0.2 M H ₂ O ₂ as hole scavenger	~2.50 mA cm ⁻² at 1.23 V <i>vs.</i> RHE	PLD	S2
2016	Sb:SnO ₂ /BiVO ₄ core/shell	Phosphate buffer with 1 M Na ₂ SO ₃	~7.97 mA cm ⁻² at 1.23 V vs. RHE	hydrothermal reaction + drop- casting	\$3
2016	BiVO ₄ /WO ₃	0.5 M KPi + 1 M Na ₂ SO ₃	~4.55 mA cm ⁻² at 1.23 V <i>vs.</i> RHE	GLAD + Pulsed ED	S4

References

[S1] J. H. Kim, G. Magesh, H. J. Kang, M. Banu, J. H. Kim, J. Lee, J. S. Lee, *Nano Energy*, 2015, **15**, 153-163.

[S2] S. Murcia-López, C. Fàbrega, D. Monllor-Satoca, M. D. Hernández-Alonso, G. Penelas-Pérez, A. Morata, J. R. Morante, and T. Andreu, *ACS Appl. Mater. Interfaces*, 2016, **8**, 4076-4085.

[S3] L. Zhou, C. Zhao, B. Giri, P. Allen, X. Xu, H. Joshi, Y. Fan, L. V. Titova, and P. M. Rao, *Nano Lett.*, 2016, **16**, 3463–3474.

[S4] M. G. Lee, D. H. Kim, W. Sohn, C. W. Moon, H. Park, S. Lee, H. W. Jang, *Nano Energy*, 2016, **28**, 250–260.