Journal Name

Electronic Supplementary Information (ESI)

Hierarchical $Ti_{1-x}Zr_xO_{2-y}$ nanocrystals with exposed high energy facets showing co-catalyst free solar light driven water splitting and improved light to energy conversion efficiency

Shreyasi Chattopadhyay,^a Swastik Mondal^b and Goutam De^{*a,b}

^aNano-Structured Materials Division, CSIR-Central Glass and Ceramic Research institute, 196, Raja S. C. Mullick Road, Kolkata-700032.

^bAdvanced Materials Characterization Unit, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata-700032.

Fig. S1 (a) XRD and (b) Raman spectra of control TiO_2 samples T_{nP} and T_{iP} .

Fig. S2 XPS surface survey scan of (a) TZ_{nP} and (b) TZ_{iP} .

Fig. S3 XPS analysis of unmodified pure TiO_2 (T_{nP}/T_{iP}).

Fig. S4 (a) Bright field and (b) dark field TEM images of TZ_{nP} showing the mesoporosity present in the cubic morphology.

Table S1 Crystallographic data obtained from the PXRD data collected using Cu K α (λ = 1.5406 Å) rotating anode within 2 θ range of 10-120° and scan rate of 0.12°/minute

Sample	Chemical Formula	Lattice parameters	Reliability Factors	Atomic coordinates and thermal parameters	
				Ti/Zr	0
TZ _{nP}	$Ti_{0.665}Zr_{0.335}O_{1.955}$	Crystal family: Tetragonal (space group: $I4_1/amd$) a=3.8502(2) Å c=9.8951(7) Å	$R_p=3.04$ $wR_p=4.68$ GoF=4.24	$\begin{array}{l} x=0.5\\ y=0.5\\ z=0\\ U_{iso}=0.0065(5)\\ Atom site occupancy:\\ 1[0.665(14)/0.335(14)] \end{array}$	$\begin{array}{l} x{=}0.5\\ y{=}0\\ z{=}0.0411(2)\\ U_{iso}{=}0.0021(16)\\ Atom site\\ occupancy: 0.9775 \end{array}$
ΤΖ _i ρ	$Ti_{0.912}Zr_{0.088}O_{1.963}$	Crystal family: Tetragonal (space group: $I4_1/amd$) a=3.8290(2) Å c=9.7560(7) Å	R _p =1.58 wR _p =2.17 GoF=1.99	$\begin{array}{l} x=0.5\\ y=0.5\\ z=0\\ U_{iso}=0.0029(7)\\ Atom site occupancy:\\ 1[0.912(14)/0.088(14)]\end{array}$	x=0.5 y=0 z=0.0383(3) U _{iso} =0.014(2) Atom site occupancy: 0.9815

Sample	Ti/Zr–O	Ti/Zr–O	0–0	0–0	Nearest	O-Ti/Zr-O
	(Å)	∥[001] (Å)	(Å)	shared edge	Ti/Zr-Ti/Zr	(°)
				(Å)	(Å)	
TZ_{nP}	1.9675(5)	2.067(2)	2.543(2)	2.8413(10)	3.1346(3)	101.92(7)
$(Ti_{0.665}Zr_{0.335}O_{1.955})$						
TZ _{iP}	1.9506(6)	2.065(3)	2.555(3)	2.8088(11)	3.1007(3)	101.04(8)
$(Ti_{0.912}Zr_{0.088}O_{1.963})$						
Anatase TiO ₂	1.9338(5)	1.9797(23)	2.4658(29)	2.7924(13)	3.0394(2)	101.90(7)
(Horn et. al.)						

Table S2 Bond distances and angles between atoms in comparison to Horn et. al. (ref 39)

S1. <u>Calculation of light to power conversion efficiency</u> (η) :

The overall solar light to power conversion efficiency (η) for a solar cell is defined in terms of the photocurrent density i.e. short-circuit current (J_{sc}), open-circuit photovoltage (V_{oc}), fill factor of the cell (*ff*) and intensity of the incident light (P_{in}). The following equation was used to calculate the efficiency value.

 $\eta = \frac{output \ power}{Input \ power} \ge 100 \ (\%)$ $= \frac{P_{max} \ (mW \ cm^{-2})}{P_{in} \ (mW \ cm^{-2})} \ge 100 \ (\%)$

 $=\frac{J_{sc} (mA cm^{-2}) \times V_{oc} (V) \times ff}{incident \ light \ intensity \ (mW \ cm^{-2})} \ x100 \ (\%); \ [P_{in} = 100 \ mW \ cm^{-2} \ for \ 1 \ Sun \ condition]$

$$= J_{sc} (mA \ cm^{-2}) \times V_{oc}(V) \times ff (\%)$$