Electronic Supplementary information

Carbon-Incorporated Janus-Type Ni₂P/Ni Hollow Spheres for

High Performance Hybrid Supercapacitors

Shujin Hou, Xingtao Xu, Miao Wang, Yingqiao Xu, Ting Lu, Yefeng Yao, Likun Pan*

Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China

* Corresponding author e-mail: lkpan@phy.ecnu.edu.cn

Fig. S1 SEM images of (a) Ni-MOFs, (b) N-0, (c) NP-50, (d) NP-150, (e) NP-250 and (f) NP-350.

Fig. S2 TEM image of NP-150. Inset is selected-area electron diffraction pattern.

Fig. S3 High-resolution XPS P 2p spectrum of NP-150.

Fig. S4 Nitrogen adsorption-desorption isotherms with corresponding BJH desorption pore size distributions (inset) of NP-150.

Fig. S5 Electrochemical characteristics of NP-50, NP-150, NP-250 and NP-350: (a) CV curves at a scan rate of 10 mV s⁻¹, (b) GCD curves at a current density of 1 A g^{-1} .

Fig. S6 GCD curves of the HSC device collected at various potential voltages at the current density of 1 A g⁻¹.

Fig. S7 SEM images of the NP-150 electrode material after 5000 cycles at a current density of 7 A $g^{-1}.$

Materials	Ni 2p _{3/2} Binding energy(eV)		Atomic ratio	
	Ni ²⁺	Ni ⁰⁺	Ni ²⁺	Ni ⁰⁺
NP-50	856.45	852.81	1.00	0.63
NP-150	856.61	852.85	1.00	0.41
NP-250	856.96	582.99	1.00	0.09
NP-350	857.20	853.13	1.00	0.05

Table S1 XPS binding energy and atomic ratio of Ni with different valences in different samples by XPS measurement.

Table S2 Comparison of specific capacitances between the hollow $Ni_2P/Ni/C$ spheres in this work, and other transition metal phosphide electrodes reported in the previous literatures (three-electrode system).

Materials	Specific capacitance	Reference
Ni ₂ P	843.25 F g ⁻¹ at 1 A g ⁻¹	1
amorphous Ni-P	1338.75 F g ⁻¹ at 1 A g ⁻¹	2
Co ₂ P nanoflowers	416 F g^{-1} at 1 A g^{-1}	3
Co-Ni pyrophosphates	1259 F g^{-1} at 1.5 A g^{-1}	4
CF@NiP _x	817 F cm ⁻³ at 2 mA cm ⁻²	5
Ni-coated Ni ₂ P	1150 F g ⁻¹ at 2 A g ⁻¹	6
Ni-P@NiCo ₂ O ₄	1240 F g^{-1} at 1 A g^{-1}	7
NP-150	1449 F g^{-1} at 1 A g^{-1}	this work

References

- 1. D. Wang, L. B. Kong, M. C. Liu, Y. C. Luo and L. Kang, *Chem.-Eur. J.*, 2015, 21, 17897-17903.
- D. Wang, L.-B. Kong, M.-C. Liu, W.-B. Zhang, Y.-C. Luo and L. Kang, J. Power Sources, 2015, 274, 1107-1113.
- 3. X. Chen, M. Cheng, D. Chen and R. Wang, ACS Appl. Mater. Interfaces, 2016, 8, 3892-3900.
- 4. C. Chen, N. Zhang, Y. He, B. Liang, R. Ma and X. Liu, *ACS Appl. Mater. Interfaces*, 2016, **8**, 23114-23121.
- 5. Z. Zhang, S. Liu, J. Xiao and S. Wang, J. Mater. Chem. A, 2016, 4, 9691-9699.
- 6. Y. Lu, J.-k. Liu, X.-y. Liu, S. Huang, T.-q. Wang, X.-l. Wang, C.-d. Gu, J.-p. Tu and S. X. Mao, *CrystEngComm*, 2013, **15**, 7071-7079.
- 7. X. Li, R. Ding, L. Yi, W. Shi, Q. Xu and E. Liu, *Electrochim. Acta*, 2016, 222, 1169-1175.