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1. Preparation of the films

Table 1 the composition of the prepared film

Sample GO GPI GPH GPF GPE

Graphene oxide 1.0 9.6 4.8 2.4 1.2

Dopamine 0 1.0 1.0 1.0 1.0

The film is prepared according to the stoichiometric ratio described in Tab. 1. The 
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reduction of the graphene oxide by dopamine is recorded by XRD, the corresponding 

patterns are shown in Fig. 1.  A sharp peak located at 9.70o of GO can be observed from 

Fig. 2, which is the typical diffraction peak of GO. According to Bragg’s equation, the d 

spacing is 0.91 nm. As the content of the dopamine increases, new diffraction peaks are 

arouse, and when the stoichiometric ratio of (graphene oxide to dopamine) is decreased to 

2.4:1, the typical diffraction peak of GO is completed disappeared, which indicated that 

the graphene oxide sheets are almost totally transfer to reduced grapnene oxide (rGO).

Fig. 1 XRD patterns of series film

2. Effective medium theory

To account for the association between thermal conductive phenomenon and the 



laminated structure of the film, the effective medium theory is adopted for interpret 

the thermal resistance1-3.
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Where K11 and K22
 
 represent the in-plane thermal conductivities and K33 is the 

across-plane thermal conductivity.  θ is the angle between the materials plane and 

the local particles symmetric axis. ρ(θ) is a distribution function describing the 

ellipsoidal particle orientation, f is the volume fraction of the filler,   (i=1, 2, 3) are 
𝐾𝑐𝑖𝑖

the equivalent thermal conductivities conductivities along the symmetric axis of this 

aligned composites unit cell. Km is the thermal conductivity of the matrix phase, Lii are 

the geometrical factors dependent on the particle shape and are given by the following 



equation:
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Where Rbd is thermal boundary resistance and h is the thickness of the 

nanosheets.

For the laminate composites, considering the aligned graphene, assuming ideal 

case, p→0,  L11 = 0 and L33 = 1. Thus, E2 and E6 can be expressed as following:
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Thus equations of effective medium theory reduce to:
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Where Km is the thermal conductivity of the matrix phase, Kp is the thermal 

conductivity of the laminated nanosheets, f is the volume fraction of the particles, θ is 

the angle betweenthe materials axis, X3, and the local particles symmetric axis, Rbd is 

thermal boundary resistance, and h is the thickness of the reduced graphene.

In the case of GPF, from the sectional SEM image, Materials axis X3 is 

perpendicular to to the graphene sheets symmetric axis (X1 and X2 direction), which 

means that θ is tend to be zero. Thus, Rbd can be expressed as:

Rbd = (                                  )
f  K33
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- 1
Kp

 h

In this case, h is approximately 0.5 nm, K33 is 0.69 W m-1 k-1, and it can be 

approximatively calculated that Rbd is less than 0.5× 10-9  K•m2•W-1 4-5.

 of charred layer of GPF(d)(e)



3. π-π stacking

The XRD pattern of GPF shown in Fig. 2  in the papers demonstrate the 

reduction of the GO. In detail, the peaks in the curve can be collected (2Θ=17.76, 

20.40, 21.88, 22.24, 25.64 and 28.50), respectively, the corresponding d spacing are 

0.500, 0.435, 0.406, 0.399, 0.347, 0.312nm. The narrow spacing might be aroused by 

the  π-π stacking between the reduced GO and polydopamine6-7. 

4. Tensile strength of the prepared films

Fig. 2 Strain-stress curves of the prepared films

The strain stress curves of the prepared films are presented in Fig. 2. It can be 



observed that the tensile strength of the films shows little difference. The tensile 

strength of GPE, GPF,GPH,GPI is 24.5, 25.0, 24.4 and 21.6 respectively. Among 

these films, GPE get a relative low tensile strength, which may be aroused by the 

totally reduction of the GO, which impairs the hydrogen bond  between the rGO 

sheets and polydopamine.

5. Fire performance of the prepared films

The fire performances of the prepared films are depicted in Fig. 4. It can be 

found that all the films have excellent flame retardancy. However, based on the digital 

images of the samples after fire tests shown in Fig. 5, the flame stability of the film 

varies as the compositions of the film. Due to the less content of polydopamine, GPH 

and GPI can be burnt out, by leaving the large holes. This phenomenon demonstrates 

that polydopamine play a significant role in the flame retardant of the film. 
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Fig. 3 Fire performance of the prepared films

Fig. 3 Digital images of The samples after fire tests 
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