Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

Cobalt Selenide Nanoflake Decorated

Reduced Graphene Oxide Nanocomposite for Efficient Glucose Electro-Oxidation in Alkaline Medium

M. C. Dilusha Cooray, Xiaolong Zhang, Ying Zhang, Steven J. Langford, Alan M. Bond, Jie

Zhang*

School of Chemistry, Monash University, Clayton, Victoria 3800, Australia

* Corresponding author: jie.zhang@monash.edu

Figure S1: (a) Comparison of XRD spectra obtained after TGA experiment with CoSe-rGO and the standard spectrum of Co₃O₄ (b) TGA data obtained from the CoSe-rGO composite.

Calculation of percentage composition of CoSe and rGo in the composite:

$$\frac{\mathrm{m}_{\mathrm{Co3O4}}}{\mathrm{M}_{\mathrm{Co3O4}}} \times 3 \times \mathrm{M}_{\mathrm{CoSe}} = m_{\mathrm{CoSe}}$$

$$\frac{2.32 \times 10^{-3}}{240.8} \times 3 \times 137.89 = 3.99 \text{ mg}$$

% composition of CoSe in the composite $=\frac{3.99}{5.02} \times 100 = 79$ % % composition of rGO in the composite = 100 - 79 = 21 %

Figure S2: (a) Cyclic voltammograms obtained in 0.3 M NaOH with a CoSe-rGO/chit modified GCE as a function of scan rate and plots of the peak current density (J_p) versus scan rate for processes I/I' (b) and II/II' (c).

Figure S3 : (a) RDE voltammograms obtained at a CoSe-rGO/chit modified GC RDE in a 5.0 mM Glucose (0.3 M NaOH) solution at a scan rate of 0.02 V s⁻¹ as a function of rotation rate (ω) and (b) the relationship between $\omega^{1/2}$ and background corrected current density measured at 0.65 V.

Figure S4: Cyclic voltammograms obtained before and after holding the potential of a CoSerGO/chit modified GC electrode at 0.7 V vs. Hg|HgO_(1 M NaOH) for 1 h in a 0.3 M NaOH solution containing 20.0 mM glucose.

Figure S5: Cyclic voltammograms obtained over the potential range of 0 to 0.68 V at a scan rate of 0.02 V s^{-1} using a CoSe-rGO/chit modified GC electrode in 0.3 M NaOH in the absence (—) and presence (—) of 5.0 mM gluconolactone.

Figure S6: ¹H-NMR spectra obtained at 300 K with D₂O as the solvent after bulk electrolysis of (a) glucose and (b) gluconolactone at 0.7 V vs Hg|HgO_(1 M NaOH) using a CoSe-rGO/chit modified GC plate. The ¹H-NMR spectrum obtained under the same conditions before bulk electrolysis of glucose (c) also is shown for comparison.

Figure S7: Gas chromatogram obtained from a gas sample collected from the head space of an air tight cell after bulk electrolysis at 0.7 V vs Hg|HgO_(1 M NaOH) using a CoSe-rGO/chit modified GC plate.

Figure S8: Cyclic voltammograms obtained at a scan rate of 0.02 V s^{-1} in a 0.3 M NaOH solution containing 5.0 mM glucose with a CoSe-rGO/chit modified GCE in the absence and presence of 0.5 mM UA. The results obtained with a blank solution and with a solution contacting 0.5 mM UA alone also are provided for comparison.

Figure S9: Cyclic voltammograms obtained at a scan rate of 0.02 V s^{-1} with a bare GCE in a 0.3 M NaOH solution containing 2.5 mM AA after exposure to air for designated amounts of time under stirring conditions. A decrease in the oxidation current was observed due to the oxidation of AA in air. After ~90 min, current dropped to zero indicating all AA was oxidized.

Figure S10: Cyclic voltammograms obtained at a scan rate of 0.02 V s⁻¹ with a CoSe-rGO/chit modified GCE using a freshly prepared 0.3 M NaOH solution containing 5.0 mM glucose before and after exposure to air for 90 min under stirring conditions. The results obtained from a blank solution and from a 0.3 M NaOH solution contacting 2.5 mM AA after exposure to air for 90 min under stirring conditions are also shown for comparison.

 Table S1: Comparison of performance of electrodes modified with Co based nanocomposites

 for glucose oxidation

Electrode	Working potential/ V	Electrolyte medium	Sensitivity/ µA cm ⁻² mM ⁻¹	Max. current density/ μA cm ⁻²	LOD/ µM	Linear dynamic range/ mM	Ref
CoO nanorods/FTO	0.5 vs. Ag/AgCl	1 M NaOH	571.8	2500	0.058	0-3.5	1
Co ₃ O ₄ NFs- Nafion/GCE	0.59 vs. Ag/AgCl	0.1 M NaOH	36.25	-	0.97	0-2.04	2
CoOOH nanosheets	0.40 vs. Ag/AgCl	0.1 M NaOH	967	790	10.9	0.03- 0.7	3
CoOxNPs/ ERGO/ GCE	0.60 vs SCE	0.05 M NaOH	79.3	-	2	0.01- 0.55	4
3D graphene/Co ₃ O ₄ nanowire composite	0.58 vs. Ag/AgCl	0.1 M NaOH	3390	600	0.025	0- 0.080	5
CoOx·nH2O– MWCNTs	0.55 vs. Ag/AgCl	0.2 M NaOH	162.8	1555	2	0-4.5	6
Co ₃ O ₄ UNS-Ni(OH) ₂	0.35 vs. Ag/AgCl	0.1 M NaOH	1089	2000	1.08	0.005- 0.040	7
CoSe/rGO/chit/GCE	0.65 vs Hg/HgO	0.3 M NaOH	480	5414	2.5	0-10	This work

Abbreviations: FTO = Fluorine doped Tin Oxide, NFs = nanoflakes, ERGO = electrochemically reduced graphene oxide, UNS = ultra-nanosheets.

- 1. C.-W. Kung, C.-Y. Lin, Y.-H. Lai, R. Vittal and K.-C. Ho, *Biosens. Bioelectron.*, 2011, **27**, 125-131.
- 2. Y. Ding, Y. Wang, L. Su, M. Bellagamba, H. Zhang and Y. Lei, *Biosens. Bioelectron.*, 2010, **26**, 542-548.
- 3. K. K. Lee, P. Y. Loh, C. H. Sow and W. S. Chin, *Electrochem. Commun.*, 2012, **20**, 128-132.
- 4. S.-J. Li, J.-M. Du, J. Chen, N.-N. Mao, M.-J. Zhang and H. Pang, *J. Solid State Electrochem.*, 2014, **18**, 1049-1056.
- 5. X.-C. Dong, H. Xu, X.-W. Wang, Y.-X. Huang, M. B. Chan-Park, H. Zhang, L.-H. Wang, W. Huang and P. Chen, *ACS nano*, 2012, **6**, 3206-3213.
- 6. J. Yang and S. Gunasekaran, *Electrochim. Acta*, 2011, **56**, 5538-5544.
- 7. M. Mahmoudian, W. Basirun, P. M. Woi, M. Sookhakian, R. Yousefi, H. Ghadimi and Y. Alias, *Mater. Sci. Eng. C*, 2016, **59**, 500-508.