Graphene-Coupled Nitrogen-Enriched Porous Carbon Nanosheets for

Energy Storage

Jinhui Zhu,^a Xiaodong Zhuang,^{*b,c} Jun Yang,^{*a,d} Xinliang Feng^c and Shin-ichi Hirano^d

- ^{a.} Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China. *E-mail: <u>vangj723@sjtu.edu.cn</u>.
- ^{b.} Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China. *E-mail: zhuang@sjtu.edu.cn
- ^{c.} Centre for Advancing Electronics Dresden (cfaed) & Department of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany.
- ^{*d.*} Hirano Institute for Materials Innovation, Shanghai Jiao Tong University, 200240 Shanghai, China.

Fig. S1 a) ¹H NMR spectrum of 4-cyanobenzenediazonium tetrafluoroborate, b) FTIR spectra of 4-cyanoaniline and 4-cyanobenzenediazonium tetrafluoroborate.

Fig. S2 Structure analysis for RGO and RGO-CN, a) FTIR spectra, b) N1s XPS spectra, c) Raman spectra and d) XRD patterns.

Fig. S3 Morphology and microstructure of RGO-CN, a) SEM, b) TEM and c) AFM images. AFM image of RGO (d).

Fig. S4 SEM images of CTF (a), G-CTF-10 (b) and G-CTF-20 (c); TEM images of CTF (d), G-CTF-10 (e) and G-CTF-20 (f).

Fig. S5 AFM images and height profiles of G-CTF-10 (a), G-CTF-15 (b) and G-CTF-20 (c).

Fig. S6 XPS survey spectra (a) and N1s XPS spectra (b) of CTF and G-CTFs.

Fig. S7 FTIR spectra (a) and Raman spectra (b) of CTF and G-CTFs.

Fig. S8 TGA curves of CTF and G-CTFs.

Fig. S9 SEM images of G-PC-700 (a), G-PC-800 (b) and G-PC-900 (c); TEM images of G-PC-700 (d), G-PC-800 (e) and G-PC-900 (f).

Fig. S10 SEM images of G-PC-800 (a) and the corresponding elemental mapping images (b and c).

Fig. S11 AFM images and height profiles of G-PC-700 (a), G-PC-800 (b) and G-PC-900 (c).

Fig. S12 Structure analysis for G-CTF-15 and G-PCs. (a) XRD patterns, (b) Raman spectra, (c) nitrogen adsorption/desorption isotherms and (d) the corresponding pore size distribution.

Fig. S13 XPS survey spectra (a) and N1s XPS spectra (b) of G-PCs.

Fig. S14 The electrochemical performance of G-CTFs |Li half cells in the voltage range of 1.5-4.5 V *versus* Li/Li⁺. a) Charge-discharge curves of G-CTF-15 electrode with varying current densities. (b) Cycle performance of CTF and G-CTFs electrodes with a current density of 0.1 A g⁻¹ for the first 50 cycles and 1 A g⁻¹ for the consequent cycles. Nyquist plots (c), equivalent circuit and kinetic parameters (d) of G-CTF-15 and G-PC-800.

Fig. S15 Nyquist plots of G-CTF-15 and G-PCs. Inset: equivalent circuit. R_s , R_{ct} , C_{dl} and Z_W represent the electrolyte resistance, the charge transfer resistance, the double layer capacitance and the

Warburg impedance, respectively.

Fig. S16 TEM images of G-PC-800 after 3000 cycles and 500 cycles in Li-ion battery (a) and Na-ion battery (b), respectively.

Fig. S17 Capacitive performance of G-PC-800 electrode. a) CV curves for different scan rates in 6 M KOH, b) galvanostatic charge-discharge curves at different current densities in 6 M KOH, c) cycle performance at 5 A g⁻¹ for 10,000 cycles, and d) Nyquist plots before and after charge and discharge under open-circuit voltage.

Sample	CTF	G-CTF-10	G-CTF-15	G-CTF-20	G-PC-700	G-PC-800	G-PC-900
N content (wt%) ^a	8.67	7.34	6.10	5.92	7.05	6.35	5.49
N/C ^b	0.10	0.15	0.10	0.08	0.13	0.12	0.11
pyridine N (%) $^{\circ}$	43.6	23.2	27.5	35.0	31.0	29.4	18.4
quaternary N (%) d	56.4	76.8	72.5	65.0	69.0	70.6	81.6
N _{pyridine} /N _{quaternary} ^e	0.77	0.30	0.38	0.54	0.45	0.42	0.23

Table S1. Nitrogen contents of CTF, G-CTFs and G-PCs from Elemental Analysis (EA) and corresponding nitrogen species concentration calculated by XPS.

^a data from EA, ^{b, c, d} data from XPS, ^e data from c and d.

 Table S2. Comparison of the LIBs performance of G-PC-800 and other reported cathode materials.

Sample	Condition	Voltage Window	Specific capacity	Ref
	Condition	(V versus Li/Li⁺)	(mA h g ⁻¹) (Cycles)	
PPy/r-GO	700 mA g ⁻¹	2.0-4.0	61 (200)	1
PI-4	73.4 mA g ⁻¹	1.5-3.5	173 (100)	2
LF-SWNT	200 mA g ⁻¹	1.8-3.6	200 (100)	3
PPy/FC	50 mA g ⁻¹	1.5-4.0	115 (100)	4
ACTF	5 A g ⁻¹	1.5-4.5	80 (1000)	5
PI/SWNT	221.5 mA g ⁻¹	1.5-3.5	175 (200)	6
BFFD	0.1 C	1.75-3.25	201 (200)	7
MWNT/graphen	100 mA g ⁻¹	1.5-4.5	135 (100)	8
е				
G-PC-800	5 A g ⁻¹	1.5-4.5	161 (3000)	This work

Fable S3. Comparison of the SIBs	performance of G-PC-800 and other rep	ported cathode materials.
----------------------------------	---------------------------------------	---------------------------

Sample	Condition	Voltage Window (V versus Na/Na⁺)	Specific capacity (mA h g ⁻¹) (Cycles)	Ref
BPOE	1 A g ⁻¹	1.3-4.1	90 (7000)	9
$Na_4C_8H_2O_6$	18.7 mA g ⁻¹	1.6-2.8	183 (100)	10
PTCDA	200 mA g ⁻¹	1.0-3.0	130 (195)	11
PTCDA-PI	0.1 C	1.5-3.5	148.9 (400)	12
NaNiFe(CN) ₆	10 mA g ⁻¹	2.5-3.8	65 (5)	13
NaFePO ₄	0.05 C	1.5-4.5	142 (200)	14
R-FeHCF	300 mA g ⁻¹	1.75-3.75	105 (1000)	15
NVP@C@rGO	100 C	2.5-3.8	55 (10000)	16
G-PC-800	1 A g ⁻¹	1.3-4.1	137 (500)	This work

Sample	Condition	electrolyte	Specific gravimetric capacitances (F g ⁻¹)	Ref
RGO	0.1 A g ⁻¹	6М КОН	41.5	17
Graphene (activated)	0.7 A g ⁻¹	BMIMBF ₄ /AN	200	18
N-CNF-900	1 A g ⁻¹	6М КОН	202	19
TNN-500	0.2 A g ⁻¹	$1 \text{ M H}_2\text{SO}_4$	285	20
ENM700	0.05 A g ⁻¹	6М КОН	281	21
3D porous carbon	10 mV s ⁻¹	$1 \text{ M H}_2\text{SO}_4$	176	22
B/N-GAs	5.0 mV s ⁻¹	$1 \text{ M H}_2\text{SO}_4$	239	23
HGF-EC	1 A g ⁻¹	BMIMBF ₄ /AN	298	24
G-PC-800	0.1 A g ⁻¹	6М КОН	340	This work

Table S4. Comparison of the capacitive performance of G-PC-800 and other reported electrode materials.

Notes and references

- 1. Y. Yang, C. Wang, B. Yue, S. Gambhir, C. O. Too and G. G. Wallace, *Adv. Energy Mater.*, 2012, **2**, 266-272.
- 2. Z. Song, H. Zhan and Y. Zhou, Angew. Chem., Int. Ed., 2010, **122**, 8622-8626.
- 3. M. Lee, J. Hong, H. Kim, H.-D. Lim, S. B. Cho, K. Kang and C. B. Park, *Adv. Mater.*, 2014, **26**, 2558-2565.
- 4. M. Zhou, J. Qian, X. Ai and H. Yang, *Adv. Mater.*, 2011, **23**, 4913-4917.
- 5. K. Sakaushi, G. Nickerl, F. M. Wisser, D. Nishio-Hamane, E. Hosono, H. Zhou, S. Kaskel and J. Eckert, *Angew. Chem., Int. Ed.*, 2012, **51**, 7850-7854.
- H. Wu, S. A. Shevlin, Q. Meng, W. Guo, Y. Meng, K. Lu, Z. Wei and Z. Guo, *Adv. Mater.*, 2014, 26, 3338-3343.
- 7. Y. Liang, P. Zhang, S. Yang, Z. Tao and J. Chen, *Adv. Energy Mater.*, 2013, **3**, 600-605.
- 8. H. R. Byon, B. M. Gallant, S. W. Lee and Y. Shao-Horn, *Adv. Funct. Mater.*, 2013, **23**, 1037-1045.
- 9. K. Sakaushi, E. Hosono, G. Nickerl, T. Gemming, H. Zhou, S. Kaskel and J. Eckert, *Nat. Commun.*, 2013, **4**, 1485-1491.
- 10. S. Wang, L. Wang, Z. Zhu, Z. Hu, Q. Zhao and J. Chen, *Angew. Chem., Int. Ed.*, 2014, **126**, 6002-6006.
- 11. W. Luo, M. Allen, V. Raju and X. Ji, *Adv. Energy Mater.*, 2014, **4**, 1400554.
- H.-g. Wang, S. Yuan, D.-l. Ma, X.-l. Huang, F.-l. Meng and X.-b. Zhang, *Adv. Energy Mater.*, 2014, 4, 1301651.
- Y. Yue, A. J. Binder, B. Guo, Z. Zhang, Z.-A. Qiao, C. Tian and S. Dai, *Angew. Chem., Int. Ed.*, 2014, 53, 3134-3137.
- 14. J. Kim, D.-H. Seo, H. Kim, I. Park, J.-K. Yoo, S.-K. Jung, Y.-U. Park, W. A. Goddard Iii and K. Kang, *Energy Environ. Sci.*, 2015, **8**, 540-545.
- 15. L. Wang, J. Song, R. Qiao, L. A. Wray, M. A. Hossain, Y.-D. Chuang, W. Yang, Y. Lu, D. Evans, J.-J. Lee, S. Vail, X. Zhao, M. Nishijima, S. Kakimoto and J. B. Goodenough, *J. Am. Chem. Soc.*, 2015,

137, 2548-2554.

- 16. X. Rui, W. Sun, C. Wu, Y. Yu and Q. Yan, *Adv. Mater.*, 2015, **27**, 6670-6676.
- 17. Z. Lei, N. Christov and X. Zhao, *Energy Environ. Sci.*, 2011, **4**, 1866-1873.
- Y. Zhu, S. Murali, M. D. Stoller, K. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz and M. Thommes, *Science*, 2011, **332**, 1537-1541.
- 19. L.-F. Chen, X.-D. Zhang, H.-W. Liang, M. Kong, Q.-F. Guan, P. Chen, Z.-Y. Wu and S.-H. Yu, *ACS Nano*, 2012, **6**, 7092-7102.
- 20. L. Hao, B. Luo, X. Li, M. Jin, Y. Fang, Z. Tang, Y. Jia, M. Liang, A. Thomas, J. Yang and L. Zhi, *Energy Environ. Sci.*, 2012, **5**, 9747-9751.
- 21. B. Xu, H. Duan, M. Chu, G. Cao and Y. Yang, J. Mater. Chem. A, 2013, 1, 4565-4570.
- 22. Z.-S. Wu, Y. Sun, Y.-Z. Tan, S. Yang, X. Feng and K. Müllen, *J. Am. Chem. Soc.*, 2012, **134**, 19532-19535.
- 23. Z. S. Wu, A. Winter, L. Chen, Y. Sun, A. Turchanin, X. Feng and K. Müllen, *Adv. Mater.*, 2012, **24**, 5130-5135.
- 24. Y. Xu, Z. Lin, X. Zhong, X. Huang, N. O. Weiss, Y. Huang and X. Duan, *Nat. Commun.*, 2014, **5**, 4554-4561.