Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Efficient Coupling of Hierarchical V₂O₅@Ni₃S₂ Hybrid Nanoarray for Pseudocapacitors and Hydrogen Production

Xiongwei Zhong^{+, a, b}, Linfei Zhang^{+, b}, Jun Tang^b, Jianwei Chai^c, Jincheng Xu^a, Lujie Cao^{a, b},

Mingyang Yang^{a, b}, Ming Yang^c, Weiguang Kong^b, Shijie Wang^c, Hua Cheng^b, Zhouguang Lu^b, Chun Cheng^{*, b}, Baomin Xu^{*, b}, and Hui Pan^{*,a}

^a Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, China

^b Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China

^c Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology, and Research), #08-03, 2 Fusionopolis Way, Innovis, Singapore 138634.

* Corresponding authors. Tel.: +853 88224427;

E-mail address: chengc@sustc.edu.cn (Chun Cheng); xubm@sustc.edu.cn (Baomin

Xu); huipan@umac.mo (Hui Pan)

+ These authors contributed equally to this work.

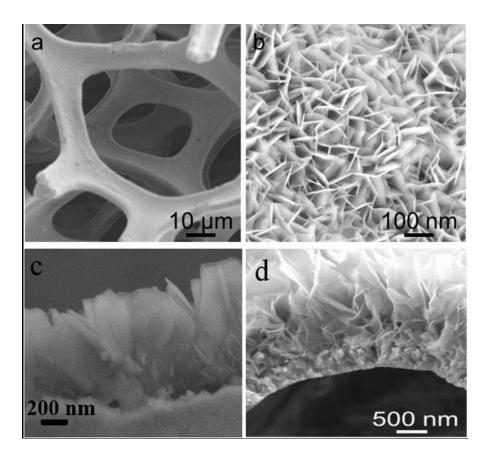


Figure S1. a) The top view, b) high-resolution, c) side view SEM images of a representative Ni_3S_2 nanosheet, respectively. (d) A side view SEM image of V_2O_5 @ Ni_3S_2 .

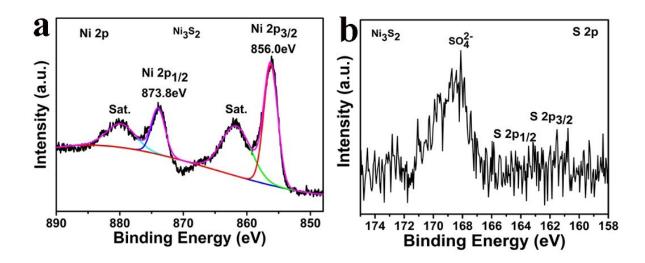


Figure S2. a) Ni 2p and b) S 2p XPS spectral peaks for Ni_3S_2 nanosheet.

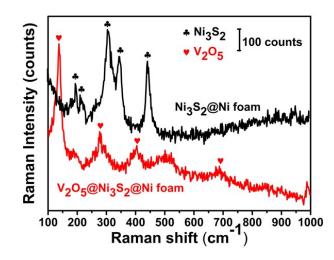


Figure S3. The Raman spectrum of Ni₃S₂ (black) and V₂O₅@Ni₃S₂ (blue) nanosheets.

From Figure S3, the Raman intensity of Ni_3S_2 in the V_2O_5 @ Ni_3S_2 sample is very low, and only strong V_2O_5 can be detected. These results suggest the V_2O_5 nanosheet completely cover Ni_3S_2 nanosheet.

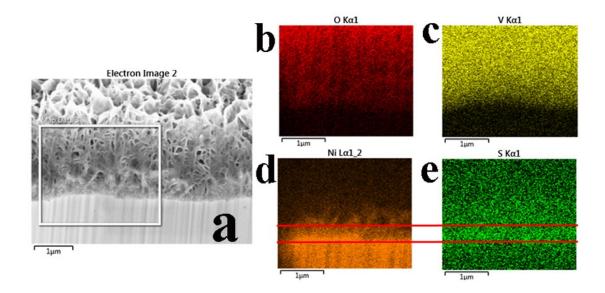


Figure S4. a) The SEM image showing the cross-section of V_2O_5 @Ni₃S₂, using the FIB technique. The energy dispersive spectroscopy mapping of b) O, c) V, d) Ni and e) S,

and the region correspondiing to a).

Figure S4 reveals that V_2O_5 is on the top, Ni_3S_2 in the middle and Ni foam at the bottom. The thicknesses of V_2O_5 and Ni_3S_2 layer are approximate 2 μ m and 0.4 μ m, respectively. The element dispersive mappings of Ni and S overlapps at the middle region, indicating this layer is Ni_3S_2 .

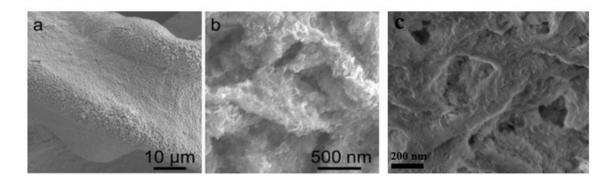


Figure S5. a) A top-view, b) a high-resolution SEM images of V_2O_5 @Ni₃S₂ after 1000 galvanostatic charge/discharge (GCD) cycles. c) The SEM image of Ni₃S₂ after 1000 GCD cycles.

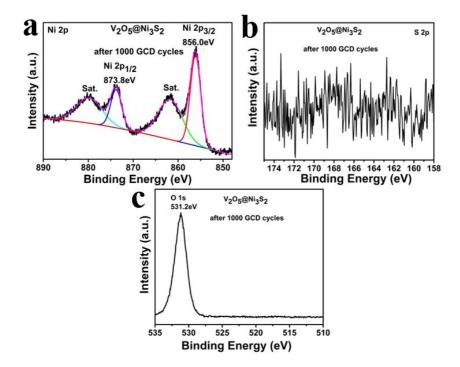


Figure S6. The a) Ni 2p, b) S 2p and c) O 1s XPS spectra of V₂O₅@Ni₃S₂ after 1000

GCD cycles.

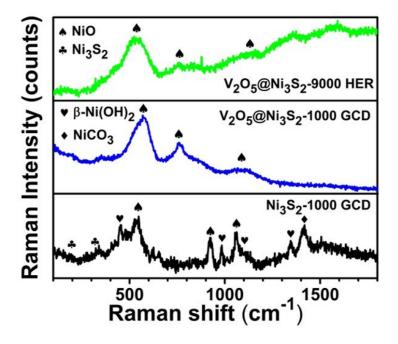


Figure S7. Raman spectra of Ni₃S₂ after 1000 GCD cycles, and V₂O₅@Ni₃S₂ after 1000

GCD cycles and 9000 linear sweep voltammetry (LSV) cycles, respectively.

The Raman spectroscopic investigation was conducted to identify the surface

chemical composition of Ni₃S₂ and V₂O₅@Ni₃S₂ after GCD and HER cycles, respectively. For Ni₃S₂ after 1000 GCD cycles, the peak at 545 cm⁻¹ was attributed to one-phonon longitudinal optical (LO), the peak at 923 cm⁻¹ could be assigned to onephonon transverse optical and one-phono longitudinal optical mode (TO+LO), and the peak at 1060 cm⁻¹ was attributed to two-phono longitudinal optical mode (2LO) mode. In addition, there are four peaks at 453 cm⁻¹, 983 cm⁻¹, 1103 cm⁻¹ and 1347 cm⁻¹ related to the β-Ni(OH)₂³⁻⁵, two peaks at 196 cm⁻¹ and 320 cm⁻¹ related to the Ni₃S₂⁶ and one peak at 1416 cm⁻¹ corresponded to NiCO₃⁷. It reveals that the V₂O₅ grown on Ni₃S₂ which can be efficiently impeded Ni₃S₂ corrosion and produced to β-Ni(OH)₂ and the β-Ni(OH)₂ maybe reacted with carbon oxide form air to form NiCO₃.

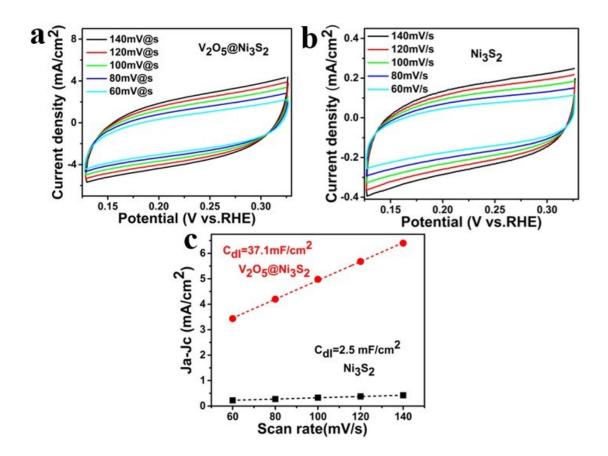


Figure S8. a), b) Cyclic voltammograms (CVs) at different scan rate in the region of $0.13V \sim 0.32 \text{ V}$ (vs. RHE) for V_2O_5 @Ni₃S₂ and Ni₃S₂, respectively. c) The variation of double-layer charging currents of V_2O_5 @Ni₃S₂ and Ni₃S₂ at 0.225 V (vs. RHE) under various scan rates, respectively.

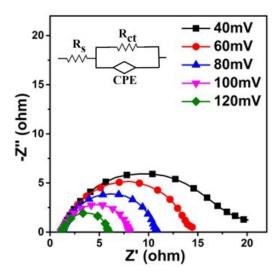


Figure S9. Nyquist plots of V₂O₅@Ni₃S₂ at various HER overpotentials.

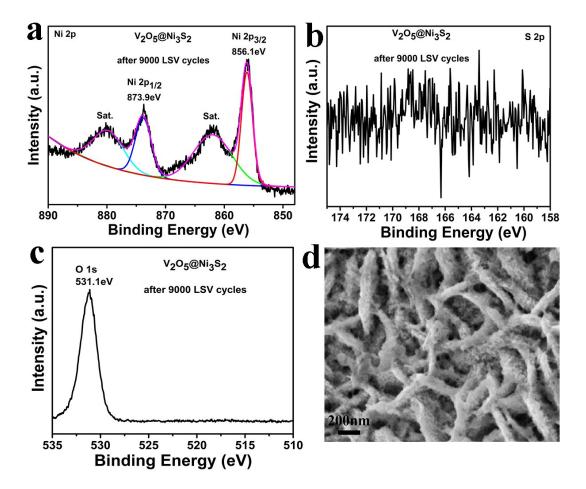


Figure S10. The XPS spectra of Ni 2p a), S 2p b) and O 1s c). d) High-resolution SEM

image of V₂O₅@Ni₃S₂ after 9000 LSV cycles.

References

- 1. C. Liu, C. Li, K. Ahmed, Z. Mutlu, C. S. Ozkan and M. Ozkan, *Scientific reports*, 2016, 6, 29183-29190.
- 2. S. Wu, K. Hui, K. Hui and K. H. Kim, Journal of Materials Chemistry A, 2016, 4, 9113-9123.
- 3. H. Li, M. Yu, F. Wang, P. Liu, Y. Liang, J. Xiao, C. Wang, Y. Tong and G. Yang, *Nature communications*, 2013, **4**, 1894-1900.
- 4. B. Li, M. Ai and Z. Xu, Chemical Communications, 2010, 46, 6267-6269.
- 5. W. Zhou, X. Cao, Z. Zeng, W. Shi, Y. Zhu, Q. Yan, H. Liu, J. Wang and H. Zhang, *Energy & Environmental Science*, 2013, 6, 2216-2221.
- J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang and X. Feng, *Angew Chem Int Ed Engl*, 2016, 55, 6702-6707.
- 7. R. L. Frost, M. L. Weier, W. N. Martens and S. J. Mills, *Neues Jahrbuch für Mineralogie-Abhandlungen: Journal of Mineralogy and Geochemistry*, 2006, **183**, 107-116.