Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Novel mesoporous amorphous B-N-O-H nanofoam as electrode for capacitive dye removal from water

Ming Ming Chen, ^{a,b} Da Wei, ^{a,b} Wei Chu, ^c Li Ping Hou ^{a,b} and Dong Ge Tong ^{a,b*}

^a State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China. E-mail: tongdongge@163.com; Fax: +86 28 8407 8940

^b Collaborative Innovation Center of Panxi Strategic Mineral Resources Multi-purpose Utilization, College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.

^c School of Chemical Engineering & Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu 610065, China. E-mail: chuwei1965@foxmail.com; Fax: +86 28 8540 3397

Summary: 72 Pages; 40 Tables; 32 Figures

Table S1	4
Table S2	5
Table S3	6
Table S4	9
Table S5	10
Table S6	11
Table S7	12
Table S8	12
Table S9	12
Table S10	13
Table S11	13
Table S12	14
Table S13	15
Table S14	16
Table S15	17
Table S16	18
Table S17	19
Table S18	20
Table S19	
Table S20	
Table S21	23
Table S22	24
Table S23	
Table S24	26
Table S25	27
Table S26	
Table S27	29
Table S28	
Table S29	
Table S30	32
Table S31	
Table S32	
Table S33	
Table S34	
Table S35	
Table S36	
Table S37	40
Table S38	
Table S39	
Table S40	
Fig.S1	
Fig.S2	
Fig.S3	

Table of Contents

Fig.S4	45
Fig.S5	46
Fig.S6	46
Fig.S7	47
Fig.S8	48
Fig.S9	49
Fig.S10	
Fig.S11	51
Fig.S12	
Fig.S13	
Fig.S14	
Fig.S15	
Fig.S16	
Fig.S17	
Fig.S18	
Fig.S19	
Fig.S20	60
Fig.S21	61
Fig.S22	
Fig.S23	63
Fig.S24	64
Fig.S25	65
Fig.S26	66
Fig.S27	67
Fig.S28	68
Fig.S29	69
Fig.S30	
Fig.S31	71
Fig.S32	72

Table S1 Textural properties of mesoporous B-N-O-H nanofoams and their mother mesoporous CuB₂₃ templates.

Samples	<i>d</i> ₁₀₀ / nm	₀₀ / nm a ₀ / nm		$S_{BET} / m^2 g^{-1}$	Pore size / nm		Wall thickness / nm		Pore volume / cm ³ g ⁻¹	
CuB ₂₃	4.38*	5.05 ^a	5.11 ^b	645	2.0 ^c	2.0 ^e	3.1 ^f	3.1 ^g	1.58	
B-N-O-H nanofoams	5.81*	6.71 ^a	6.22 ^b	1023	3.7 ^d	3.7 ^e	2.5 ^f	2.5 ^g	3.53	

Note: $*d_{100}$ spacing values were calculated from the Bragg equation (1): $2 \times d_{100} = \lambda / \sin \theta_{100}, \lambda = 0.15418$ nm;

^a Cell parameters (a_0) were calculated from the cell parameters equation (2) for hexagonal system: $a_0 = 2 \times d_{100}/(3)^{1/2}$;

^b Cell parameters (a_0) were the distance between the centers of two neighboring nanowires by STEM averaged from 300 couples;

^c Pore diameters obtained from pore size distribution;

^d Pore diameters averaged from pore size distribution via equation (3): Average pore diameter = Average pore diameter of pore $1 \times$ the ratio of

pore 1 +Average pore diameter of pore $2 \times (1 -$ the ratio of pore 1);

^e Pore diameters obtained by STEM averaged from 300 pores;

^f Wall thickness calculated from the wall thickness equation (4) for hexagonal system: Wall thickness = a_0 – pore size

^g Wall thickness obtained by STEM averaged from 300 points.

Table S2 Elemental analysis of N and H in B-N-O-H obtained using NH₄Cl and ¹⁵N

and ²H labeled ¹⁵N²H₄Cl as precursors, respectively.

Samples	H/ %	N/%	² H/%	¹⁵ N/%
B-N-O-H obtained using NH ₄ Cl obtained using	1.076	28.382	-	-
NH ₄ Cl as precursors				
B-N-O-H obtained using NH ₄ Cl obtained using	-	-	2.087	29.480
¹⁵ N ² H ₄ Cl as precursors				

Table S3 The effect of reaction parameters, including plasma power, reaction temperature, reaction time, NH_4Cl amounts, Ionic liquids (IIs) volume, Ils kinds, O_2 rate on the yield, specific surface areas, average pore diameters and atom composition of B-N-O-H nanofoams prepared with SPT.

Samples	Reaction	Reaction	Plasma	NH ₄ Cl /	Ils	Ils kinds	O ₂ rate /	Yield	Specific	Pore distribution ^b	Average	Atom composition
	temperature /	time	power /	mmol ^a	volume		mLmin ⁻¹	/ %	surface		pore	
	°C	/ min	W		/ m L				areas		diameters	
									$/m^{2}g^{-1}$		/ nm ^c	
1	55	5	20	1.87	30	[BMIM][PF ₆]	10	100	648	2.2×0.11+5.3×0.89	$5.0^{\rm c} (5.0)^{\rm d}$	BN _{0.452} O _{0.308} H _{0.240}
2	45	5	20	1.87	30	[BMIM][PF ₆]	10	100	806	2.2×0.30+5.3×0.70	$4.4^{c}(4.4)^{d}$	BN _{0.452} O _{0.308} H _{0.240}
3	35	5	20	1.87	30	[BMIM][PF ₆]	10	100	900	2.2×0.42+5.3×0.58	$4.0^{\rm c}(4.0)^{\rm d}$	BN _{0.452} O _{0.308} H _{0.240}
4	25	5	20	1.87	30	[BMIM][PF ₆]	10	100	1023	2.2×0.52+5.3×0.48	$3.7^{\rm c}(3.7)^{\rm d}$	$BN_{0.452}O_{0.308}H_{0.240}$
5	15	5	20	1.87	30	[BMIM][PF ₆]	10	82.7	1023	2.2×0.52+5.3×0.48	3.7°(3.7) ^d	BN _{0.452} O _{0.308} H _{0.240}
6	5	5	20	1.87	30	[BMIM][PF ₆]	10	50.3	1023	2.2×0.52+5.3×0.48	$3.7^{\rm c}(3.7)^{\rm d}$	BN _{0.452} O _{0.308} H _{0.240}
7	25	0.5	20	1.87	30	[BMIM][PF ₆]	10	-	-	-	-	BN _{0.121} O _{0.095} H _{0.070}
8	25	1	20	1.87	30	[BMIM][PF ₆]	10	-	-	-	-	BN _{0.217} O _{0.183} H _{0.114}
9	25	2	20	1.87	30	[BMIM][PF ₆]	10	-	-	-	-	BN _{0.343} O _{0.239} H _{0.183}

10	25	10	20	1.87	30	[BMIM][PF ₆]	10	100	1023	2.2×0.52+5.3×0.48	$3.7^{\circ}(3.7)^{d}$	BN _{0.452} O _{0.308} H _{0.240}
11	25	5	18	1.87	30	[BMIM][PF ₆]	10	0	No products	-	-	-
12	25	5	25	1.87	30	[BMIM][PF ₆]	10	100	721	2.2×0.20+5.3×0.80	$4.7(4.7)^{d}$	BN _{0.452} O _{0.308} H _{0.240}
13	25	5	30	1.87	30	[BMIM][PF ₆]	10	100	579	2.2×0.05+5.3×0.95	$3.7^{\rm c}(5.2)^{\rm d}$	BN _{0.452} O _{0.308} H _{0.240}
14	25	5	20	1.80	30	[BMIM][PF ₆]	10	95	1023	2.2×0.52+5.3×0.48	$3.7^{\circ}(3.7)^{d}$	BN _{0.452} O _{0.308} H _{0.240}
15	25	5	20	2.00	30	[BMIM][PF ₆]	10	100	1023	2.2×0.52+5.3×0.48	3.7°(3.7) ^d	BN _{0.452} O _{0.308} H _{0.240}
16	25	5	20	2.50	30	[BMIM][PF ₆]	10	100	1023	2.2×0.52+5.3×0.48	$3.7^{\rm c}(3.7)^{\rm d}$	BN _{0.452} O _{0.308} H _{0.240}
17	25	5	20	1.87	50	[BMIM][PF ₆]	10	100	1023	2.2×0.52+5.3×0.48	$3.7^{\rm c}(3.7)^{\rm d}$	BN _{0.452} O _{0.308} H _{0.240}
18	25	5	20	1.87	100	[BMIM][PF ₆]	10	100	1023	2.2×0.52+5.3×0.48	$3.7^{\rm c}(3.7)^{\rm d}$	BN _{0.452} O _{0.308} H _{0.240}
19	25	5	20	1.87	30	[BMIM]Cl	10	100	1023	2.2×0.52+5.3×0.48	3.7°(3.7) ^d	BN _{0.452} O _{0.308} H _{0.240}
20	25	5	20	1.87	30	[BMIM][BF ₄]	10	100	1023	2.2×0.52+5.3×0.48	$3.7^{\rm c}(3.7)^{\rm d}$	BN _{0.452} O _{0.308} H _{0.240}
21	25	5	20	1.87	30	[BMIM][PF ₆]	8	80	1023	2.2×0.52+5.3×0.48	$3.7^{\rm c}(3.7)^{\rm d}$	BN _{0.452} O _{0.308} H _{0.240}
22	25	5	20	1.87	30	[BMIM][PF ₆]	12	100	1023	2.2×0.52+5.3×0.48	$3.7^{\rm c}(3.7)^{\rm d}$	BN _{0.452} O _{0.308} H _{0.240}
23	25	5	20	1.87	30	[BMIM][PF ₆]	15	95	1023	2.2×0.52+5.3×0.48	$3.7^{\rm c}(3.7)^{\rm d}$	BN _{0.452} O _{0.308} H _{0.240}

Note: ^a The mass of CuB₂₃ is 50mg;

^b Pore size distribution obtained from N_2 adsorption/desorption expressed as (Average pore diameter of pore 1 \times the ratio of pore 1 + Average

pore diameter of pore $2 \times (1$ - the ratio of pore 1));

^c Average pore diameter = Average pore diameter of pore $1 \times$ the ratio of pore 1 + Average pore diameter of pore $2 \times (1 -$ the ratio of pore 1);

^d Pore diameters obtained by STEM averaged from 300 pores.

Table S4 Evaluated model parameters of the adsorption isotherms of B-N-O-H

nanofoams over MB at 298 K

Langmuir model	Freundlich model
$q_{\rm m} = 3333 \ {\rm mgg}^{-1}$	1/n = 0.3995
$K_{\rm L} = 0.004478 \ (\rm Lmg^{-1})$	$K_F = 1.214 \ (mgg^{-1})(Lmg^{-1})^{1/n}$
$R^2 = 0.9978$	$R^2 = 0.9781$

Adsorbents	CDI or not	q _m / mgg ⁻¹
Amorphous $BN_{0.452}O_{0.308}H_{0.240}$ nanofoams in this work	rk yes	3333
obtained at 298 K		
Amorphous $BN_{0.452}O_{0.308}H_{0.240}$ nanofoams in this work	rk yes	2994
obtained at 308 K		
Amorphous $BN_{0.452}O_{0.308}H_{0.240}$ nanofoams in this work	rk yes	2898
obtained at 318 K		
Amorphous $BN_{0.452}O_{0.308}H_{0.240}$ nanofoams in this work	rk yes	2544
obtained at 328 K		
Amorphous $BN_{0.452}O_{0.308}H_{0.240}$ nanofoams in this work	rk yes	2659
obtained at 25 W of plasma power		
Amorphous $BN_{0.452}O_{0.308}H_{0.240}$ nanofoams in this work	rk yes	2403
obtained at 30 W of plasma power		
Amorphous BN _{0.452} O _{0.308} H _{0.240} in this work	yes	922
Amorphous $BN_{0.121}O_{0.095}H_{0.070}$ in this work	yes	843
Amorphous $BN_{0.217}O_{0.183}H_{0.114}$ in this work	yes	752
Amorphous $BN_{0.343}O_{0.239}H_{0.183}$ in this work	yes	660
Amorphous BN in this work	yes	520
Commercial BN	yes	130
mesoporous BN fibers	no	631 ^{5a}
Porous BN nanosheets	no	313 ^{5b}
BN nanonet	no	327.8 ^{5 h}
BN nanocarpets	no	272.4 ^{5j}
MOFs	no	952 ^{22a}
ZJU-24	no	902 ^{22b}
BIT-1	no	810 ²² c
Amino-MIL-101(Al)	no	762 ^{22d}
MIL-100(Fe)	no	736.2 ^{22e}
POM@MIL-101	no	371 ^{22f}
MOF-235	no	187 ^{22g}
Coconut husk activated carbon	no	434.78 ^{22h}

Table S5 Comparison of the adsorption capacity of MB by different adsorbents

Samples	Pore sizes ^a /	L	angmuir mo	del	Freu	Freundlich model		
	nm	q _m /	K_L / Lmg^{-1}	R^2	1/n	K _F /(m	R^2	
		mgg ⁻¹				gg ⁻¹)(
						Lmg^{-1}		
1	2.2×0.42+5.3	2994	4.304×10 ⁻³	0.9977	0.4118	1.222	0.9700	
	×0.58							
2	2.2×0.30+5.3	2898	3.912×10 ⁻³	0.9978	0.4197	1.228	0.9701	
	×0.70							
3	2.2×0.20+5.3	2659	3.854×10 ⁻³	0.9979	0.4272	1.233	0.9701	
	×0.80							
4	2.2×0.11+5.3	2544	3.793×10 ⁻³	0.9979	0.4336	1.239	0.9769	
	×0.89							
5	2.2×0.05+5.3	2403	3.638×10 ⁻³	0.9985	0.4407	1.246	0.9769	
	×0.95							

Table S6 Evaluated model parameters of the adsorption isotherms of B-N-O-Hnanofoams over MB at 298 K with different ratios of 2.2 nm pores

Note: ^a Pore size distribution obtained from N_2 adsorption/desorption expressed as (Average pore diameter of pore 1 × the ratio of pore 1 + Average pore diameter of pore 2 × (1- the ratio of pore 1)) Table S7 MB electrosorption dimensionless quantity (R_L) over B-N-O-H nanofoams

Initial concentrations / mgL ⁻¹	R _L
100	0.69
200	0.52
300	0.43
400	0.36
600	0.27
800	0.22
1000	0.18
1200	0.16
1500	0.13

at different initial concentrations

 Table S8
 Parameters of pseudo-first-order and pseudo-second-order models for the

Pseudo-first-order model	Pseudo-second-order model
$C_0 = 600 \text{ mgL}^{-1}$	$C_0 = 600 \text{ mgL}^{-1}$
$q_{e, exp} = 1991 \text{ mgg}^{-1}$	$q_{e, exp} = 1991 \text{ mgg}^{-1}$
$q_{e,cal} = 184 \text{ mgg}^{-1}$	$q_{e,cal} = 2000 \text{ mgg}^{-1}$
$K_1 = 0.0574$	$K_2 = 1.40 \times 10^{-3}$
$R^2 = 0.7431$	$R^2 = 0.9999$

electro-adsorption of MB onto B-N-O-H nanofoams at 298 K

Table S9 Parameters of pseudo-first-order and pseudo-second-order kinetics in terms

Bias	Pse	udo-first-or	der	Pseudo-second-order				
potential /	q _{e,cal} /	K_1/\min^{-1}	R^2	q _{e,cal} /	K_2/gmg^{-1}	R^2		
V	mgg ⁻¹			mgg ⁻¹	min ⁻¹			
0	42.89	0.0439	0.8590	312	3.53×10 ⁻³	0.9997		
0.4	75.02	0.0415	0.8250	833	2.40×10 ⁻³	0.9998		
0.8	95.91	0.0460	0.8473	1250	2.13×10 ⁻³	0.9999		

of different voltage

Table S10 Parameters of pseudo-first-order and pseudo-second-order kinetics in terms

Sample	Pore sizes ^a / nm	Pseu	do-first-	order	Pseudo-second-order				
		q _{e,cal} /	K1/	R^2	q _{e,cal} /	K_2/gmg^{-1}	R^2		
		mgg ⁻¹	\min^{-1}		mgg ⁻¹	min ⁻¹			
1	2.2×0.42+5.3×0.58	110.1	0.0452	0.8551	1848	1.36×10 ⁻³	0.9999		
2	2.2×0.30+5.3×0.70	105.0	0.0438	0.8250	1752	1.29×10 ⁻³	0.9998		
3	2.2×0.20+5.3×0.80	98.9	0.0424	0.8451	1653	1.23×10 ⁻³	0.9999		
4	2.2×0.11+5.3×0.89	93.7	0.0412	0.8451	1567	1.17×10 ⁻³	0.9998		
5	2.2×0.05+5.3×0.95	87.9	0.0400	0.8450	1470	1.12×10 ⁻³	0.9999		

of different voltage

Note: ^a Pore size distribution obtained from N_2 adsorption/desorption expressed as (Average pore diameter of pore 1 × the ratio of pore 1 + Average pore diameter of pore 2 × (1- the ratio of pore 1))

Table S11 Thermodynamic parameters for the adsorption of MB onto B-N-O-H

Temperature / K	$\Delta G/(kJ mol^{-1})$	$\Delta H/(kJ mol^{-1})$	$\Delta S/(J \text{ mol}^{-1})$
298 K	-3.971		
308 K	-3.438	-13.271	-31.4
318 K	-3.070		
328 K	-2.748		

nanofoams

Table S12 Comparison of Solid state 33 S NMR shifts for B-N-O-H nanofoams, AO7, B-N-O-H nanofoams after being charged in 600mgL⁻¹AO7 at 0 V and 1.2 V, respectively.

Samples	Chemical shifts of S atoms / ppm
	S*
B-N-O-H nanofoams	-
AO7	-7.9
0V**	-9.5
1.2V**	-10.4
$\Delta\delta$ (0 V- B-N-O-H nanofoams)	-
Δδ (0 V- AO7)	-1.6
Δδ (1.2V- 0 V)	-0.9

Note: * indicates the atom from the dye ions; ** means the B-N-O-H nanofoams charged at those voltages in the 600mgL⁻¹dyes

Table S13 Comparison of Solid state ¹⁷O NMR shifts for B-N-O-H nanofoams, AO7, B-N-O-H nanofoams after being charged in 600mgL⁻¹ AO7 at 0 V and 1.2 V, respectively.

Samples			C	hemical shif	fts of O ato	ms / ppm			
	OB _{1/3}	OB _{1/4}	0*-1	ON ₂	ON*-1	ON*-2	O*-2	OH*-1	ОН
B-N-O-H nanofoams	145.0	123.0	-	112.0	-	-	-	-	50.0
AO7	-	-	132.1		-	-	69.8	-	-
0V**	143.8	121.8	130.8	110.8	83.3	75.8	68.3	65.6	48.8
1.2V**	143	120.8	129.7	109.8	82.1	74.5	67.3	64.7	47.9
Δδ (0 V- B-N-O-H nanofoams)	-1.2	-1.2	-	-1.2	-	-	-	-	-1.2
Δδ (0 V- AO7)	-	-	-1.3	-	-	-	-1.5	-	-
Δδ (1.2V- 0 V)	-0.8	-1.0	-0.9	-1.0	-0.8	-1.4	-1.0	-0.9	-0.9

Note: * indicates the atoms from the dye ions; the number behind them corresponding to their location in the dye ions;

** means the B-N-O-H nanofoams charged at those voltages in the 600mgL^{-1} dyes.

Table S14 Comparison of Solid state ¹⁵N NMR shifts for B-N-O-H nanofoams, AO7, B-N-O-H nanofoams after being charged in 600mgL⁻¹ AO7 at 0 V and 1.2 V, respectively.

Samples			С	hemical shi	fts of N ato	ms / ppm			
	NB _{1/3}	NB _{1/4}	NO ₂	NH ₂	NH*-1	NO*-1	NO*-2	N*-1	N*-2
B-N-O-H nanofoams	133.0	92.0	56.0	-30.0	-	-	-	-	-
AO7		-	-	-	-	-	-	-227.0	-229.0
0V**	131.5	90.5	54.5	-31.5	-28.9	13.0	2.5	-217.0	-239.0
1.2V**	130.6	89.6	53.7	-32.5	-27.9	11.8	1.1	-221.0	-245.0
$\Delta\delta$ (0 V- B-N-O-H nanofoams)	-1.5	-1.5	-1.5	-1.5	-	-	-	-	-
Δδ (0 V- AO7)	-	-	-	-		-	-	-10.0	-10.0
Δδ (1.2V- 0 V)	-0.9	-0.9	-0.8	-1.0	-1.0	-1.2	-1.4	-6.0	-6.0

Note: * indicates the atoms from the dye ions; the number behind them corresponding to their location in the dye ions;

** means the B-N-O-H nanofoams charged at those voltages in the 600mgL^{-1} dyes.

Table S15 Comparison of Solid state ¹³C NMR shifts for B-N-O-H nanofoams, AO7, B-N-O-H nanofoams after being charged in 600mgL⁻¹ AO7 at 0 V and 1.2 V, respectively.

Samples	Chemical shifts of C atoms / ppm								
	C*-1	C*-2	C*-3	C*-4	C*-5				
B-N-O-H nanofoams	-	-	-	-	-				
AO7	157.2	146.5	128.7	126.5	123.5				
0V**	156.2	145.6	127.8	125.5	122.5				
1.2V**	155.4	145.0	127.2	124.8	121.9				
Δδ (0 V- B-N-O-H nanofoams)	-	-	-	-	-				
Δδ (0 V- AO7)	-1.0	-0.9	-0.9	-1.0	-1.0				
Δδ (1.2V- 0 V)	-0.6	-0.6	-0.6	-0.7	-0.6				

Note: * indicates the atoms from the dye ions; the number behind them corresponding to their location in the dye ions;

Table S16 Comparison of Solid state ¹¹B NMR shifts for B-N-O-H nanofoams, AO7, B-N-O-H nanofoams after being charged in 600mgL⁻¹ AO7 at 0 V and 1.2 V, respectively.

Samples			Chemical sh	nifts of B aton	ns / ppm		
	BN ₃	BN ₃	BO ₃	BO ₃	BO ₄	BN ₄	BH ₂
B-N-O-H nanofoams	19.2	16.0	15.7	12.5	6.0	1.7	-4.0
AO7	-	-	-	-	-	-	-
0V**	18.7	15.5	15.2	12.0	5.5	1.2	-4.5
1.2V**	18.4	15.1	14.8	11.5	5.1	0.7	-4.9
Δδ (0 V- B-N-O-H nanofoams)	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5
Δδ (0 V- ΑΟ7)	-	-	-	-	-	-	-
Δδ (1.2V-0 V)	-0.3	-0.4	-0.4	-0.5	-0.4	-0.5	-0.4

Note: * indicates the atoms from the dye ions; the number behind them corresponding to their location in the dye ions;

Table S17 Comparison of Solid state ¹H NMR shifts for B-N-O-H nanofoams, AO7, B-N-O-H nanofoams after being charged in 600mgL⁻¹ AO7 at 0 V and 1.2 V, respectively.

Samples				(Chemical	l shifts o	f H aton	ıs / ppm				
	НО	HN _{1/2}	HN*-1	HN*-2	HB _{1/2}	H*-1	H*-2	H*-3	H*-4	H*-5	HO*-1	HO*-2
B-N-O-H nanofoams	15.69	15.42	-	-	15.00	-	-	-	-	-	-	-
AO7	-	-	-	-	-	5.27	8.41	7.95	7.35	7.00	-	-
0V**	15.63	15.37	15.23	15.19	14.93	5.20	8.34	7.88	7.27	6.92	6.14	3.58
1.2V**	15.59	15.32	15.19	15.14	14.89	5.14	8.29	7.84	7.21	6.87	6.08	3.51
$\Delta\delta$ (0 V- B-N-O-H nanofoams)	-0.06	-0.05	-	-	-0.07	-	-	-	-	-	-	-
Δδ (0 V- AO7)	-	-	-	-	-	-0.07	-0.07	-0.07	-0.08	-0.08		
Δδ (1.2V- 0 V)	-0.04	-0.05	-0.04	-0.05	-0.04	-0.06	-0.05	-0.04	-0.06	-0.05	-0.06	-0.07

Note: * indicates the atoms from the dye ions; the number behind them corresponding to their location in the dye ions;

Table S18 Comparison of Solid state ¹⁷O NMR shifts for B-N-O-H nanofoams, RhB, B-N-O-H nanofoams after being charged in 600mgL⁻¹ RhB at 0 V and 1.2 V, respectively.

Samples			Chemi	cal shifts of () atoms / pj	pm		
	OB _{1/3}	OB _{1/4}	O*-1	ON ₂	ON*-1	ON*-2	ОН	O*-2
B-N-O-H nanofoams	145.0	123.0	-	112.0	-	-	50.0	-
RhB	-	-	293.2	-	-	-	-	12.1
0V**	143.5	121.5	291.0	110.5	81.0	75.0	48.5	10.0
1.2V**	140.0	118.1	287.0	107.2	76.1	71.0	45.1	5.2
$\Delta\delta$ (0 V- B-N-O-H nanofoams)	-1.5	-1.5	-2.2	-1.5	-	-	-1.5	-
Δδ (0 V- RhB)								
Δδ (1.2V- 0 V)	-3.5	-3.4	-4.0	-3.3	-3.9	-4.0	-3.4	-4.8

Note: * indicates the atoms from the dye ions; the number behind them corresponding to their location in the dye ions;

Table S19 Comparison of Solid state ¹⁵N NMR shifts for B-N-O-H nanofoams, RhB, B-N-O-H nanofoams after being charged in 600mgL⁻¹ RhB at 0 V and 1.2 V, respectively.

Samples			Chem	ical shifts of	N atoms / p	pm		
	NB _{1/3}	NB _{1/4}	NO ₂	NH ₂	NO*-1	NO*-2	N*-1	N*-2
B-N-O-H nanofoams	133	92	56	-30	-	-	-	-
RhB	-	-	-	-	-	-	-302	-305
0V**	131	90	54	-32	17	5	-310	-316
1.2V**	126	86	50	-28	11	-1	-326	-336
$\Delta\delta$ (0 V- B-N-O-H nanofoams)	-2	-2	-2	-2	-	-	-	-
Δδ (0 V- RhB)	-	-	-	-	-	-	-8	-11
Δδ (1.2V-0 V)	-5	-4	-4	-4	-6	-6	-16	-20

Note: * indicates the atoms from the dye ions; the number behind them corresponding to their location in the dye ions;

Table S20 Comparison of Solid state ¹³C NMR shifts for B-N-O-H nanofoams, RhB, B-N-O-H nanofoams after being charged in 600mgL⁻¹ RhB at 0 V and 1.2 V, respectively.

Samples	Chemical shifts of C atoms / ppm										
	C*-1	C*-2	C*-3	C*-4	C*-5	C*-6	C*-7				
B-N-O-H nanofoams	-	-	-	-	-	-	-				
RhB	166.0	155.1	129.2	110.1	93.0	44.1	10.2				
0V**	165.0	153.9	127.8	108.1	91.9	42.8	9.1				
1.2V**	161.9	151.1	124.6	105.6	88.9	40.0	6.7				
$\Delta\delta$ (0 V- B-N-O-H nanofoams)	-	-	-	-	-	-	-				
Δδ (0 V- RhB)	-1.0	-1.2	-1.4	-2.0	-1.1	-1.3	-1.1				
Δδ (1.2V- 0 V)	-3.1	-2.8	-3.2	-2.5	-3.0	-2.8	-2.3				

Note: * indicates the atoms from the dye ions; the number behind them corresponding to their location in the dye ions;

Table S21 Comparison of Solid state ¹¹B NMR shifts for B-N-O-H nanofoams, RhB, B-N-O-H nanofoams after being charged in 600mgL⁻¹ RhB at 0 V and 1.2 V, respectively.

Samples			Chemical s	hifts of B aton	ıs / ppm		
	BN ₃	BN ₃	BO ₃	BO ₃	BO ₄	BN ₄	BH ₂
B-N-O-H nanofoams	19.2	16.0	15.7	12.5	6.0	1.7	-4.0
RhB	-	-	-	-	-	-	-
0V**	18.6	15.4	15.1	11.9	5.4	1.1	-4.6
1.2V**	16.5	13.4	13.0	9.9	3.2	-0.8	-6.6
$\Delta\delta$ (0 V- B-N-O-H nanofoams)	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6
Δδ (0 V- RhB)	-	-	-	-	-	-	-
Δδ (1.2V- 0 V)	-2.1	-2.0	-2.1	-2.0	-2.2	-1.9	-2.0

Note: * indicates the atoms from the dye ions; the number behind them corresponding to their location in the dye ions;

Table S22 Comparison of Solid state ¹H NMR shifts for B-N-O-H nanofoams, RhB, B-N-O-H nanofoams after being charged in 600mgL⁻¹ RhB at 0 V and 1.2 V, respectively.

Samples					Che	mical shi	fts of H a	toms / p	opm					
	НО	HN _{1/2}	HN*-1	HN*-2	HB _{1/2}	HO*-1	HO*-2	H*-1	H*-2	H*-3	H*-4	H*-5	H*-6	H*-7
B-N-O-H nanofoams	15.69	15.42	-	-	15.00	-	-	-	-	-	-	-	-	-
RhB	-	-	-	-	-	-	-	10.93	8.11	7.80	7.30	6.80	3.50	1.20
0V**	15.60	15.33	15.15	15.09	14.10	10.02	9.91	10.88	8.07	7.75	7.27	6.76	3.45	1.16
1.2V**	15.34	15.06	14.90	14.83	13.85	9.69	9.59	10.72	7.93	7.63	7.14	6.63	3.3	1.02
Δδ (0 V- B-N-O-H					-0.09	-	-	-	-	-	-	-	-	-
nanofoams)	-0.09	-0.09	-	-										
Δδ (0 V- RhB)	-	-	-	-	-	-	-	-0.05	-0.04	-0.05	-0.03	-0.04	-0.05	-0.04
Δδ (1.2V- 0 V)	-0.26	-0.27	-0.25	-0.26	-0.25	-0.33	-0.32	-0.16	-0.14	-0.12	-0.13	-0.13	-0.15	-0.14

Note: * indicates the atoms from the dye ions; the number behind them corresponding to their location in the dye ions;

Table S23 Comparison of Solid state ³³S NMR shifts for B-N-O-H nanofoams, Congo red, B-N-O-H nanofoams after being charged in 600mgL⁻¹ Congo red at 0 V and 1.2 V, respectively.

Samples	Chemical shifts of S atoms / ppm
	<u> </u>
B-N-O-H nanofoams	-
Congo red	-10.0
0V**	-11.0
1.2V**	-11.6
$\Delta\delta$ (0 V- B-N-O-H nanofoams)	-
$\Delta\delta$ (0 V- Congo red)	-1.0
Δδ (1.2V- 0 V)	-0.6

Note: * indicates the atoms from the dye ions; the number behind them corresponding to their location in the dye ions;

Table S24 Comparison of Solid state ¹⁷O NMR shifts for B-N-O-H nanofoams, Congo red, B-N-O-H nanofoams after being charged in 600mgL⁻¹Congo red at 0 V and 1.2 V, respectively.

Samples			С	hemical shif	ts of O ato	ns / ppm			
	OB _{1/3}	OB _{1/4}	0*	ON ₂	ON*-1	ON*-2	ON*-3	OH*-1	OH
B-N-O-H nanofoams	145.0	123.0	-	112.0	-	-	-	-	50.0
Congo red	-	-	133.0	-				-	
0V**	144.0	122.0	135.1	111.0	90.1	87.0	63.2	55.0	49.0
1.2V**	143.5	121.3	134.1	110.4	89.2	86.1	62.3	54.2	48.4
$\Delta\delta$ (0 V- B-N-O-H nanofoams)	-1.0	-1.0	-	-1.0	-	-	-	-	-1.0
$\Delta\delta$ (0 V- Congo red)	-	-	-1.9	-	-	-	-	-	-
Δδ (1.2V- 0 V)	-0.5	-0.7	-1.0	-0.6	-0.9	-0.9	-0.9	-0.8	-0.6

Note: * indicates the atoms from the dye ions; the number behind them corresponding to their location in the dye ions;

Table S25 Comparison of Solid state ¹⁵N NMR shifts for B-N-O-H nanofoams, Congo red, B-N-O-H nanofoams after being charged in 600mgL⁻¹ Congo red at 0 V and 1.2 V, respectively.

Samples			C	hemical shif	ts of N ator	ns / ppm			
	NB _{1/3}	NB _{1/4}	NO ₂	NH ₂	NO*-1	NH*	N*-1	N*-2	N*-3
B-N-O-H nanofoams	133	92.0	56.0	-30.0	-	-	-	-	-
Congo red	-	-	-	-	-	-	-10.6	-203.7	-217.5
0V**	132.1	91.0	55.2	-31.0	3.5	-10.1	-15.1	-207.5	-222.4
1.2V**	131.5	90.4	54.5	-31.4	2.5	-9.1	-18.0	-211.1	-226.0
$\Delta\delta$ (0 V- B-N-O-H nanofoams)	-0.9	-1.0	-0.8	-1.0	-	-	-	-	-
$\Delta\delta$ (0 V- Congo red)	-	-	-	-	-	-	-4.5	-4.8	-4.9
Δδ (1.2V-0 V)	-0.6	-0.6	-0.7	-0.6	-1.0	-1.0	-2.9	-3.6	-3.6

Note: * indicates the atoms from the dye ions; the number behind them corresponding to their location in the dye ions;

Table S26 Comparison of Solid state ¹³C NMR shifts for B-N-O-H nanofoams, Congo red, B-N-O-H nanofoams after being charged in 600mgL⁻¹ Congo red at 0 V and 1.2 V, respectively.

Samples			Chemical	shifts of C ato	ms / ppm		
	C*-1	C*-2	C*-3	C*-4	C*-5	C*-6	C*-7
B-N-O-H nanofoams	-	-	-	-	-	-	-
Congo red	151.0	145.3	138.8	132.2	128.0	123.8	116.0
0V**	150.4	144.8	138.3	131.4	127.5	123.2	115.3
1.2V**	150.0	144.3	137.7	130.8	127.0	122.7	114.9
$\Delta\delta$ (0 V- B-N-O-H nanofoams)	-	-	-	-	-	-	-
$\Delta\delta$ (0 V- Congo red)	-0.6	-0.5	-0.5	-0.8	-0.5	-0.4	-0.7
Δδ (1.2V- 0 V)	-0.4	-0.5	-0.6	-0.4	-0.5	-0.5	-0.4

Note: * indicates the atoms from the dye ions; the number behind them corresponding to their location in the dye ions;

Table S27 Comparison of Solid state ¹¹B NMR shifts for B-N-O-H nanofoams, Congo red, B-N-O-H nanofoams after being charged in 600mgL⁻¹Congo red at 0 V and 1.2 V, respectively.

Samples			Chemical s	hifts of B aton	ns / ppm		
	BN ₃	BN ₃	BO ₃	BO ₃	BO ₄	BN ₄	BH ₂
B-N-O-H nanofoams	19.2	16.0	15.7	12.5	6.0	1.7	-4.0
Congo red	-	-	-	-		-	-
0V**	18.8	15.6	15.3	12.1	5.6	1.3	-4.4
1.2V**	18.6	15.4	15.1	11.9	5.4	1.1	-4.6
$\Delta\delta$ (0 V- B-N-O-H nanofoams)	-0.4	-0.4	-0.4	-0.4	-0.4	-0.4	-0.4
$\Delta\delta$ (0 V- Congo red)	-	-	-	-		-	-
Δδ (1.2V- 0 V)	-0.2	-0.3	-0.2	-0.2	-0.3	-0.3	-0.2

Note: * indicates the atoms from the dye ions; the number behind them corresponding to their location in the dye ions;

Table S28 Comparison of Solid state ¹H NMR shifts for B-N-O-H nanofoams, Congo red, B-N-O-H nanofoams after being charged in 600mgL⁻¹ Congo red at 0 V and 1.2 V, respectively.

Samples				(Chemical s	hifts of I	H atoms	/ ppm				
	НО	HN _{1/2}	HN*-1	HN*-2	HN*-3	HB _{1/2}	H*-1	H*-2	H*-3	H*-4	H*-5	HO*-1
B-N-O-H nanofoams	15.69	15.42	-	-	-	15.00	-	-	-	-	-	-
Congo red	-	-	-	-	-	-	6.10	8.67	8.20	7.88	7.42	-
0V**	15.65	15.38	15.18	15.10	5.80	14.96	6.00	8.63	8.16	7.84	7.38	3.60
1.2V**	15.62	15.34	15.15	15.07	5.77	14.93	5.95	8.56	8.12	7.80	7.35	3.57
$\Delta\delta$ (0 V- B-N-O-H nanofoams)	-0.04	-0.04	-	-	-	-0.04	-	-	-	-	-	-
$\Delta\delta$ (0 V- Congo red)	-	-	-	-	-	-	-0.10	-0.04	-0.04	-0.04	-0.04	-
Δδ (1.2V- 0 V)	-0.03	-0.04	-0.03	-0.03	-0.03	-0.03	-0.05	-0.05	-0.04	-0.04	-0.03	-0.03

Note: * indicates the atoms from the dye ions; the number behind them corresponding to their location in the dye ions;

Table S29 Comparison of Solid state ³³S NMR shifts for B-N-O-H nanofoams, Ponceau s, B-N-O-H nanofoams after being charged in 600mgL⁻¹ Ponceau s at 0 V and 1.2 V, respectively.

Samples		Chemical shifts	Chemical shifts of S atoms / ppm								
	S*-1	S*-2	S*-3	S*-4							
B-N-O-H nanofoams	-	-	-	-							
Ponceau s	-7.0	-9.9	-12.9	-15.5							
0V**	-7.8	-10.9	-13.7	-16.5							
1.2V**	-8.2	-11.4	-14.1	-17.0							
Δδ (0 V- B-N-O-H nanofoams)											
$\Delta\delta$ (0 V- Ponceau s)	-0.8	-1.0	-0.8	-1.0							
Δδ (1.2V- 0 V)	-0.4	-0.5	-0.4	-0.5							

Note: * indicates the atoms from the dye ions; the number behind them corresponding to their location in the dye ions;

Table S30 Comparison of Solid state ¹⁷O NMR shifts for B-N-O-H nanofoams, Ponceau s, B-N-O-H nanofoams after being charged in 600mgL⁻¹ Ponceau s at 0 V and 1.2 V, respectively.

Samples				Chem	ical shift	s of O ato	oms / ppn	n			
	OB _{1/3}	OB _{1/4}	0*-1	ON ₂	ON*-1	ON*-2	ON*-3	ON*-4	OH	OH*-1	O*-2
B-N-O-H nanofoams	145.0	123.0	-	112.0	-	-	-	-	50.0	-	-
Ponceau s	-	-	138.2	-	-	-	-	-	-	-	13.4
0V**	144.2	122.2	137.0	111.2	78.0	74.0	72.0	69.0	49.2	50.2	12.0
1.2V**	143.8	121.7	136.4	110.8	77.3	73.5	71.4	68.5	48.8	49.8	11.3
$\Delta\delta$ (0 V- B-N-O-H nanofoams)	-0.8	-0.8	-	-0.8	-	-	-	-	-0.8	-	-
$\Delta\delta$ (0 V- Ponceau s)	-	-	-1.2	-	-	-	-	-	-	-	-1.4
Δδ (1.2V- 0 V)	-0.4	-0.5	-0.6	-0.4	-0.7	-0.5	-0.6	-0.5	-0.4	-0.4	-0.7

Note: * indicates the atoms from the dye ions; the number behind them corresponding to their location in the dye ions;

Table S31 Comparison of Solid state ¹⁵N NMR shifts for B-N-O-H nanofoams, Ponceau s, B-N-O-H nanofoams after being charged in 600mgL⁻¹ Ponceau s at 0 V and 1.2 V, respectively.

Samples				Cher	mical shift	s of N ato	ms / ppn	ı			
	NB _{1/3}	NB _{1/4}	NO ₂	NH ₂	NO*-1	NO*-2	NH*	N*-1	N*-2	N*-3	N*-4
B-N-O-H nanofoams	133.0	92.0	56.0	-30.0	-	-	-	-	-	-	-
Ponceau s	-	-	-	-	-	-	-	-239.0	-229.0	-227.0	-252.0
0V**	132.2	91.2	55.2	-30.8	4.3	1.0	-14.0	-245.0	-233.0	-235.0	-258.0
1.2V**	131.8	90.8	54.9	-31.2	3.6	0.3	-14.6	-248.0	-235.0	-238.0	-261.0
$\Delta\delta$ (0 V- B-N-O-H nanofoams)	-0.8	-0.8	-0.8	-0.8	-	-	-	-	-	-	-
$\Delta\delta$ (0 V- Ponceau s)	-	-	-	-	-	-	-	-6.0	-4.0	-8.0	-6.0
Δδ (1.2V- 0 V)	-0.4	-0.4	-0.3	-0.4	-0.7	-0.7	-0.6	-3.0	-2.0	-3.0	-3.0

Note: * indicates the atoms from the dye ions; the number behind them corresponding to their location in the dye ions;

Table S32 Comparison of Solid state ¹³C NMR shifts for B-N-O-H nanofoams, Ponceau s, B-N-O-H nanofoams after being charged in 600mgL⁻¹ Ponceau s at 0 V and 1.2 V, respectively.

Samples			Chemical	shifts of C ato	ms / ppm		
	C*-1	C*-2	C*-3	C*-4	C*-5	C*-6	C*-7
B-N-O-H nanofoams	-	-	-	-	-	-	-
Ponceau s	152.1	149.0	146.6	139.0	131.1	129.0	125.0
0V**	151.5	148.4	146.0	138.4	130.5	128.4	124.4
1.2V**	151.2	148.0	145.6	138.0	130.2	128.0	124.1
$\Delta\delta$ (0 V- B-N-O-H nanofoams)	-	-	-	-	-	-	-
$\Delta\delta$ (0 V- Ponceau s)	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6
Δδ (1.2V- 0 V)	-0.3	-0.4	-0.4	-0.4	-0.3	-0.4	-0.3

Note: * indicates the atoms from the dye ions; the number behind them corresponding to their location in the dye ions;

Table S33 Comparison of Solid state ¹¹B NMR shifts for B-N-O-H nanofoams, Ponceau s, B-N-O-H nanofoams after being charged in 600mgL⁻¹ Ponceau s at 0 V and 1.2 V, respectively.

Samples			Chemical s	hifts of B aton	ıs / ppm		
	BN ₃	BN ₃	BO ₃	BO ₃	BO ₄	BN ₄	BH ₂
B-N-O-H nanofoams	19.2	16.0	15.7	12.5	6.0	1.7	-4.0
Ponceau s	-	-	-	-		-	-
0V**	18.9	15.7	15.4	12.2	5.7	1.4	-4.3
1.2V**	18.7	15.4	15.1	12.0	5.4	1.2	-4.5
Δδ (0 V- B-N-O-H nanofoams)	-0.3	-0.3	-0.3	-0.3	-0.3	-0.3	-0.3
$\Delta\delta$ (0 V- Ponceau s)	-	-	-	-		-	-
Δδ (1.2V-0 V)	-0.2	-0.3	-0.3	-0.2	-0.3	-0.2	-0.2

Note: * indicates the atoms from the dye ions; the number behind them corresponding to their location in the dye ions;

Table S34 Comparison of Solid state 1 H NMR shifts for B-N-O-H nanofoams, Ponceau s, B-N-O-H nanofoams after being charged in $600 mgL^{-1}$ Ponceau s at 0 V and 1.2 V, respectively.

Samples		Chemical shifts of H atoms / ppm														
	НО	HN _{1/}	HN*-	HN*-	HN*-	HN*-	HB _{1/}	H*-	H*-	H*-	H*-	Н*-	HO*-	HO*-	HO*-	HO*-
		2	1	2	3	4	2	1	2	3	4	5	1	2	3	4
B-N-O-H	15.6	15.42	-	-	-		15.0	-	-	-	-	-	-	-	-	-
nanofoams	9						0									
Ponceau s	-	-	-	-	-		-	4.45	8.65	8.37	8.18	7.91	-	-	-	-
0V**	15.6	15.39		15.13	15.08	15.05	14.9	4.35	8.62	8.34	8.15	7.89	3.40		3.30	3.27
	6		15.17				7							3.35		
1.2V**	15.6	15.36	15.15	15.11	15.05	15.03	14.9	4.33	8.60	8.31	8.13	7.87	3.37	3.32	3.27	3.24
	4						5									
----------------------	-------	-------	-------	-------	-------	-------	-------	------	------	------	------	------	-------	-------	-------	-------
Δδ (0 V-			-	-	-	-	-0.03	-	-	-	-	-	-	-	-	-
B-N-O-H																
nanofoams																
)	-0.03	-0.03														
$\Delta\delta$ (0 V-	-	-	-	-	-	-	-	-0.1	-0.0	-0.0	-0.0	-0.0	-	-	-	-
Ponceau s)								0	3	3	3	2				
Δδ (1.2V-					-0.03	-0.02	-0.02	-0.0	-0.0	-0.0	-0.0	-0.0	-0.02		-0.03	-0.03
0 V)	-0.02	-0.03	-0.02	-0.02				2	2	3	2	2		-0.02		

Note: * indicates the atoms from the dye ions; the number behind them corresponding to their location in the dye ions;

** means the B-N-O-H nanofoams charged at those voltages in the 600mgL^{-1} dyes.

Table S35Comparison of Solid state 33 S NMR shifts for B-N-O-H nanofoams, Methyl orange, B-N-O-H nanofoams after being charged in $600 mg L^{-1}$ Methyl orange at 0 V and 1.2 V, respectively.

Samples	Chemical shifts of S atoms
	/ ppm
	S*
B-N-O-H nanofoams	-
Methyl orange	-7.2
0V**	-7.7
1.2V**	-8.0
$\Delta\delta$ (0 V- B-N-O-H nanofoams)	-
$\Delta\delta$ (0 V- Methyl orange)	-0.5
Δδ (1.2V-0 V)	-0.3

Note: * indicates the atoms from the dye ions; the number behind them corresponding to their location in the dye ions;

Table S36 Comparison of Solid state ¹⁷O NMR shifts for B-N-O-H nanofoams, Methyl orange, B-N-O-H nanofoams after being charged in 600mgL⁻¹ Methyl orange at 0 V and 1.2 V, respectively.

Samples		Chemical shifts of O atoms / ppm									
	OB _{1/3}	OB _{1/4}	O*-1	ON ₂	ON*-1	ON*-2	ON*-3	OH			
B-N-O-H nanofoams	145.0	123.0	-	112.0	-	-	-	50.0			
Methyl orange	-	-	134.8	-	-	-	-	-			
0V**	144.5	122.5	134.0	111.5	86.2	84.1	80.0	49.5			
1.2V**	144.2	122.2	133.5	111.1	85.7	83.6	79.4	49.2			
$\Delta\delta$ (0 V- B-N-O-H nanofoams)	-0.5	-0.5	-	-0.5	-	-	-	-0.5			
$\Delta\delta$ (0 V- Methyl orange)	-	-	-0.8	-	-	-	-	-			
Δδ (1.2V- 0 V)	-0.3	-0.3	-0.5	-0.4	-0.5	-0.5	-0.6	-0.3			

Note: * indicates the atoms from the dye ions; the number behind them corresponding to their location in the dye ions;

Table S37 Comparison of Solid state ¹⁵N NMR shifts for B-N-O-H nanofoams, Methyl orange, B-N-O-H nanofoams after being charged in 600mgL⁻¹ Methyl orange at 0 V and 1.2 V, respectively.

Samples		Chemical shifts of N atoms / ppm									
	NB _{1/3}	NB _{1/4}	NO ₂	NH ₂	NO*-1	N*-1	N*-2	N*-3			
B-N-O-H nanofoams	133.0	92.0	56.0	-30.0	-	-	-	-			
Methyl orange	-	-	-	-	-	-203.6	-218.0	-242.9			
0V**	132.5	91.5	55.5	-30.5	3.3	-207.0	-222.0	-245.0			
1.2V**	132.2	91.3	55.2	-30.7	2.8	-209.0	-224.0	-246.0			
$\Delta\delta$ (0 V- B-N-O-H nanofoams)	-0.5	-0.5	-0.5	-0.5	-	-	-	-			
$\Delta\delta$ (0 V- Methyl orange)	-	-	-	-	-	-3.4	-4.0	-2.1			
Δδ (1.2V- 0 V)	-0.3	-0.2	-0.3	-0.2	-0.5	-2.0	-2.0	-1.0			

Note: * indicates the atoms from the dye ions; the number behind them corresponding to their location in the dye ions;

Table S38 Comparison of Solid state ¹³C NMR shifts for B-N-O-H nanofoams, Methyl orange, B-N-O-H nanofoams after being charged in 600mgL⁻¹ Methyl orange at 0 V and 1.2 V, respectively.

Samples	Chemical shifts of C atoms / ppm								
	C*-1	C*-2	C*-3	C*-4	C*-5	C*-6	C*-7		
B-N-O-H nanofoams	-	-	-	-	-	-	-		
Methyl orange	151.0	148.0	141.0	125.0	120.5	111.0	38.7		
0V**	150.7	147.8	140.6	124.7	120.2	110.8	38.5		
1.2V**	150.5	141.5	140.3	124.5	119.9	110.6	.8.3		
$\Delta\delta$ (0 V- B-N-O-H nanofoams)	-	-	-	-	-	-	-		
$\Delta\delta$ (0 V- Methyl orange)	-0.3	-0.2	-0.4	-0.3	-0.3	-0.2	-0.2		
Δδ (1.2V-0 V)	-0.2	-0.3	-0.3	-0.2	-0.3	-0.2	-0.2		

Note: * indicates the atoms from the dye ions; the number behind them corresponding to their location in the dye ions;

Table S39 Comparison of Solid state ¹¹B NMR shifts for B-N-O-H nanofoams, Methyl orange, B-N-O-H nanofoams after being charged in 600mgL⁻¹ Methyl orange at 0 V and 1.2 V, respectively.

Samples		Chemical shifts of B atoms / ppm									
	BN ₃	BN ₃	BO ₃	BO ₃	BO ₄	BN ₄	BH ₂				
B-N-O-H nanofoams	19.2	16.0	15.7	12.5	6.0	1.7	-4.0				
Methyl orange	-	-	-	-	-	-	-				
0V**	19.0	15.8	15.5	12.3	5.8	1.5	-4.2				
1.2V**	18.9	15.6	15.4	12.2	5.6	1.4	-4.4				
$\Delta\delta$ (0 V- B-N-O-H nanofoams)	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2				
$\Delta\delta$ (0 V- Methyl orange)	-	-	-	-	-	-	-				
Δδ (1.2V-0 V)	-0.1	-0.2	-0.1	-0.1	-0.2	-0.1	-0.2				

Note: * indicates the atoms from the dye ions; the number behind them corresponding to their location in the dye ions;

Table S40 Comparison of Solid state ¹H NMR shifts for B-N-O-H nanofoams, Methyl orange, B-N-O-H nanofoams after being charged in 600mgL⁻¹ Methyl orange at 0 V and 1.2 V, respectively.

Samples	Chemical shifts of H atoms / ppm										
	НО	HN _{1/2}	HN*-1	HN*-2	HN*-3	HB _{1/2}	H*-3	H*-2	H*-3	HO*-1	
B-N-O-H nanofoams	15.69	15.42	-	-	-	15.00	-	-	-	-	
Methyl orange	-	-	-	-	-	-	7.60	6.80	2.92	-	
0V**	15.67	15.40	15.23	15.19	15.12	14.98	7.58	6.78	2.90	3.63	
1.2V**	15.66	15.39	15.22	15.18	15.11	14.97	7.56	6.76	2.87	3.60	
$\Delta\delta$ (0 V- B-N-O-H nanofoams)	-0.02	-0.02	-	-	-	-0.02	-	-	-	-	
$\Delta\delta$ (0 V- Methyl orange)	-	-	-	-	-	-	-0.02	-0.02	-0.02	-	
Δδ (1.2V- 0 V)	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.02	-0.02	-0.03	-0.03	

Note: * indicates the atoms from the dye ions; the number behind them corresponding to their location in the dye ions;

Fig.S1 (a) Low resolution and (b) high resolution of the cross-sectional STEM images for the as-prepared B-N-O-H nanofoams obtained via ultrathin paraffin-embedded section.

Fig.S2 (a) Low resolution and (b) high resolution STEM images of the hexagonal patterns along the pore axis for the mesoporous CuB_{23} hosts obtained via ultrathin paraffin-embedded section. (The surface structure of the mesoporous CuB_{23} was not visible directly via STEM without ultrathin paraffin-embedded section, which is due to its unique dielectric properties).

Fig.S3 (a) Low resolution and (b) high resolution of the cross-sectional STEM images for the mesoporous CuB_{23} hosts obtained via ultrathin paraffin-embedded section. (The surface structure of the mesoporous CuB_{23} was not visible directly via STEM without ultrathin paraffin-embedded section, which is due to its unique dielectric properties).

Fig.S4 (a) N_2 adsorption-desorption plots and (b) pore size distribution of the mesoporous CuB_{23} hosts.

Fig.S5 The small angle XRD pattern of the mesoporous CuB_{23} hosts.

Fig.S6 (a) XRD pattern of the as-prepared amorphous B-N-O-H nanofoams treated at different temperatures under Argon atmosphere; (b) XRD pattern of the as-prepared amorphous BN treated at different temperatures under Argon atmosphere; (c) DSC profiles of the as-prepared amorphous (A) B-N-O-H nanofoams and (B) BN.

Fig.S7 XPS spectra for the as prepared amorphous BN (a) survey spectrum; (b) B 1s;

(c) N 1s and (d) O 1s spectra.

Fig.S8 ToF-SIMS spectra of (a) the as-prepared amorphous B–N–O–H nanofoams and (b) the depth distribution of B, N, O and H along the width direction (0-10nm) and length direction (0-60nm) of B–N–O–H nanofoams obtained from the ToF-SIMS depth profiles.

Fig.S9 STEM images of the as-prepared amorphous B–N–O–H nanofoams during SPT: (a) 0 min, (b) 0.5 min; (c) 1 min; (d) 2 min; (e) 5 min and (f) 10 min.

Fig.S10 ToF-SIMS spectra of the as-prepared amorphous B-N-O-H nanofoams during SPT: (a) 0 min, (b) 0.5 min; (c) 1 min; (d) 2 min; (e) 5 min; (f) 10 min; (g) 10 min after acid wash and (h) commercial BN.

a

b

Fig.S11 STEM images of B-N-O-H nanofoams prepared with (a) 30 mL [BMIM] [BF₄]; (b) 30 mL [BMIM]Cl; (c) 50 mL [BMIM][PF₆]; (d) 100 mL [BMIM][PF₆].

Fig.S12 (a) CV curves of amorphous B-N-O-H prepared in this work, amorphous BN prepared in this work and commercial BN at 5 mVs⁻¹ in 600 mgL⁻¹ MB aqueous solution; (b) Charge-discharge profiles of amorphous B-N-O-H prepared in this work, amorphous BN prepared in this work and commercial BN at 0.2 mAcm⁻² in 600 mgL⁻¹ MB aqueous solution; and (c) Specific capacity of amorphous B-N-O-H prepared in this work, amorphous BN prepared in this work and commercial BN at 0.2 mAcm⁻² in 600 mgL⁻¹ MB aqueous solution; and (c) Specific capacity of amorphous B-N-O-H prepared in this work, amorphous BN prepared in this work and commercial BN at 0.2 mAcm⁻² in 600 mgL⁻¹ MB aqueous solution.

Fig.S13 Solid state ³³S NMR of amorphous B-N-O-H nanofoams after being charged in 600mgL⁻¹ MB at different voltages. (* indicates the atoms from the dye ions; the number behind them corresponding to their location in the dye ions)

Fig.S14 Solid state ¹⁷O NMR of amorphous B-N-O-H nanofoams after being charged in 600mgL⁻¹ MB at different voltages. (* indicates the atoms from the dye ions; the number behind them corresponding to their location in the dye ions)

Fig.S15 Solid state ¹⁵N NMR of amorphous B-N-O-H nanofoams after being charged in 600mgL⁻¹ MB at different voltages. (* indicates the atoms from the dye ions; the number behind them corresponding to their location in the dye ions)

Fig.S16 Solid state ¹³C NMR of amorphous B-N-O-H nanofoams after being charged in 600mgL⁻¹ MB at different voltages. (* indicates the atoms from the dye ions; the number behind them corresponding to their location in the dye ions)

Fig.S17 Solid state ¹¹B NMR of amorphous B-N-O-H nanofoams after being charged in 600mgL⁻¹ MB at different voltages. (* indicates the atoms from the dye ions; the number behind them corresponding to their location in the dye ions)

Fig.S18 Solid state ¹H NMR of amorphous B-N-O-H nanofoams after being charged in 600mgL⁻¹ MB at different voltages. (* indicates the atoms from the dye ions; the number behind them corresponding to their location in the dye ions)

Fig.S19 Solid state ¹H NMR of amorphous B-N-O-H nanofoams after being charged in 600mgL⁻¹ MB at different voltages. (* indicates the atoms from the dye ions; the number behind them corresponding to their location in the dye ions)

Fig.S20 B 1s XPS of amorphous B-N-O-H nanofoams after being charged in 600mgL^{-1} MB at different voltages.

Fig.S21 (a) The MB electrosorption capacity vs. time profiles (the red mark represents error bars of capacity); (b) Charge efficiency and (c) Zeta potential vs. pH profiles for amorphous B-N-O-H nanofoams, amorphous B-N-O-H, amorphous BN and commercial BN, respectively.

Fig.S22 Effect of flow rate on (a) electro-adsorption capacity (the red mark represents error bars of capacity) and (b) I-t relationships of B-N-O-H nanofoams.

Fig.S23 (a) Electro-adsorption isotherm on B-N-O-H-nanofoams towards 600 mgL⁻¹ MB aqueous solution at different Bias potentials (the red mark represents error bars of capacity); (b) The pseudo-second-order electro-adsorption kinetics fitting for MB over B-N-O-H-nanofoams at 0.8 V; (c) The pseudo-second-order electro-adsorption kinetics fitting for MB over B-N-O-H-nanofoams at 0.4 V; and (d) The pseudo-second-order electro-adsorption kinetics fitting for MB over B-N-O-H-nanofoams at 0.V.

Fig.S24 (a) Electro-adsorption isotherm on B-N-O-H-nanofoams towards 600 mgL⁻¹ MB aqueous solution at different Bias potentials (the red mark represents error bars of capacity); (b) The pseudo-first-order electrosorption kinetics fitting for MB over B-N-O-H-nanofoams at 0.8 V; (c) The pseudo-first-order electrosorption kinetics fitting for MB over B-N-O-H-nanofoams at 0.4 V; and (d) The pseudo-first-order electrosorption kinetics fitting for MB over B-N-O-H-nanofoams at 0.4 V; and (d) The pseudo-first-order electrosorption kinetics fitting for MB over B-N-O-H-nanofoams at 0.4 V; and (d) The pseudo-first-order electrosorption kinetics fitting for MB over B-N-O-H-nanofoams at 0.4 V; and (d) The pseudo-first-order electrosorption kinetics fitting for MB over B-N-O-H-nanofoams at 0.4 V; and (d) The pseudo-first-order electrosorption kinetics fitting for MB over B-N-O-H-nanofoams at 0.4 V; and (d) The pseudo-first-order electrosorption kinetics fitting for MB over B-N-O-H-nanofoams at 0.4 V; and (d) The pseudo-first-order electrosorption kinetics fitting for MB over B-N-O-H-nanofoams at 0.4 V; and (d) The pseudo-first-order electrosorption kinetics fitting for MB over B-N-O-H-nanofoams at 0 V.

Fig.S25 (a) XRD profile, (b) Small angle XRD profile, (c) Nitrogen sorption isotherm,(d) Pore size distribution, (e) STEM image and (f) enlarged STEM image of B-N-O-H nanofoams after 10 cycles.

Fig.S26 Solid state ¹¹B NMR shifts for B-N-O-H nanofoams before and after adsorbing different dyes.

Fig.S27 Solid state ¹¹B NMR shifts for B-N-O-H nanofoams after being charged in 600mgL⁻¹ different dyes at 0 V and 1.2 V, respectively.

Fig.S28 Binding energy shifts of B 1s for B-N-O-H nanofoams before and after adsorbing different dyes.

Fig.S29 Binding energy shifts of B 1s for B-N-O-H nanofoams after being charged in 600mgL^{-1} different dyes at 0 V and 1.2 V, respectively.

V with different flow rates (the red mark represents error bars of capacity).

V with different flow rates (the red mark represents error bars of capacity).

Fig.S32 The separation factors (S_F) of MB/RhB calculated from their competitive adsorption capacity over B-N-O-H nanofoams after being charged at 1.2 V with different flow rates.