Electronic Supplementary Information

Performance and DRT analysis of P-SOFCs fabricated using

new phase inversion combined tape casting technology

Nai Shi^a, Feng Su^a, Daoming Huan^a, Yun Xie^a, Jie Lin^a, Wenzhou Tan^a, Ranran

Peng*^{a,b,c}, Changrong Xia^a, Chusheng Chen^a, Yalin Lu*^{a,b,c,d}

^aCAS Key Laboratory of Materials for Energy Conversion, Department of

Materials Science and Engineering, University of Science and Technology of China,

Hefei, 230026 Anhui, China

^bSynergeticInnovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

^cHefeiNational Laboratory of Physical Science at the Microscale, University of Science and Technology of China, Hefei, 230026 Anhui, China

^dNational Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China

*Email - pengrr@ustc.edu.cn

Fig.S1 Polymer-solvent-nonsolvent ternary phase diagram.

Fig.S2 Pore size distribution of anode substrates before and after reduction in hydrogen at

750°Cfor 5 hours.

Fig.S3XRD patterns of Ni-BZCY anode substrate and BZCY electrolyte film co-sintered at 1440 °C for 5 h. Standard XRD pattern for BaSO₄is also shown for comparison.

Fig.S4I-V and I-P curves of (a)PICTC button cell and (b) cold-pressing cell fueled with humid H₂

Table.S1Summary of performance (fueled with humid hydrogen) with protonic ceramic electrolytesreported in the literature.

BZCY17 (BaZr_{0.1}Ce_{0.7}Y_{0.2}O₃), BZFCY0.1(BaCo_{0.4}Fe_{0.4}Zr_{0.1}Y_{0.1}O₃), BZCY35 (BaZr_{0.3}Ce_{0.5}Y_{0.2}O₃)

Anode	Cathode	Electrolyte	Electrolyte thickness	$\mathbf{P}_{max}(mWcm^{-2})$	$\mathbf{R}_{\mathbf{p}}(\Omega \mathrm{cm}^2)$	Ref.
BZCY17-NiO Dry pressing	BZCY17-SSC (Suspension spray)	BZCY17 Suspension coating		350(600°C)	0.35	[¹]
BZCY17-NiO Dry pressing	BZCY17-SSC (Slurry painting)	BZCY17 Modified co-pressing	65µm	445(600°C)		[²]
BZCY17-NiO Dry pressing	BZCY17-LSF (Slurry painting with SSC impregnation)	BZCY17 Dry pressing		140(600°C)	1.12	[³]
BZCY17-NiO Dry pressing	BZCY17-BSCF (Slurry painting)	BZCY17 Dry pressing	20µm	267(600°C)	0.6	[⁴]
BZCY17-NiO Dry pressing	BZCY17-LSCF (Slurry painting)	BZCY17 Dry pressing	55µm	205(550°C)	1.34	[⁵]
BZCYYb-NiO Dry pressing	BCZYYb-BCFZY0.1 (BCFZY0.1 impregnation)	BZCYYb Screen-printing	30µm	455(500°C)	0.26	[⁶]
BZCY35-NiO	Sr3Fe2O7-BZCY35 (Slurry painting)	BZCY35 Dry pressing	14µm	372(600°C)	0.35	[⁷]
BZCY35-NiO phase-inversion tape casting	BZCY35-LSCF (Slurry painting)	BZCY35 Suspension coating	14µm	455(600°C) 312(550°C) 192(500°C)	0.18 0.45 1.40	This work

Fig.S5Long-term characterization of PICTC cell fueled with humid H_2

Fig.S6 Impedance spectra of the single cell when tested in humid H_2 from 500 $^\circ\!C$ to 700 $^\circ\!C$

Fig.S7.Impedance spectra of the PICTC cell operating at different voltages with humid H_2 as fuel measured at 700°C.

Table.S2.Total resistances calculated from impedance spectra (R_{imp}) and simulated from I-V curves (R_{I-V}) for PICTC cell and cold-pressing cell fueled with CH₃OH-N₂ and H₂, respectively, measured at 700 °C

	Н	2	CH ₃ OH-N ₂					
Sample	$R_{imp}(\Omega cm^2)$	$R_{I-V}(\Omega cm^2)$	$R_{imp}(\Omega cm^2)$	$R_{I-V}(\Omega cm^2)$				
PICTC cell	0.288	0.325	0.365	0.447				
Cold-pressing cell	0.262	0.315	0.393	0.606				

Fig.S8Temperature dependence of R_{pi} simulated from impedance spectra of PICTC cell

Fig.S9.Oxygenpartial pressure (a) and hydrogen partial pressure (b)dependences of the simulated resistances corresponding to each peak (Pi) measured at 600 °C

Reference

- 1. M. Liu, J. Gao, X. Liu and G. Meng, international journal of hydrogen energy, 2011, 36, 13741-13745.
- 2. L. Yang, C. Zuo, S. Wang, Z. Cheng and M. Liu, Advanced Materials, 2008, 20, 3280-3283.
- 3. X. Chen, Z. Tao, G. Hou, N. Xu and Q. Zhang, Electrochimica Acta, 2015, 165, 142-148.
- 4. B. Lin, H. Ding, Y. Dong, S. Wang, X. Zhang, D. Fang and G. Meng, Journal of Power Sources, 2009, 186, 58-61.
- 5. L. Yang, Z. Liu, S. Wang, Y. Choi, C. Zuo and M. Liu, Journal of Power Sources, 2010, 195, 471-474.
- C. Duan, J. Tong, M. Shang, S. Nikodemski, M. Sanders, S. Ricote, A. Almansoori and R. O'Hayre, Science, 2015, 349, 1321-1326.
- 7. Z. Wang, W. Yang, S. P. Shafi, L. Bi, Z. Wang, R. Peng, C. Xia, W. Liu and Y. Lu, Journal of Materials Chemistry A, 2015, 3, 8405-8412.