SUPPORTING INFORMATION

Versatility of polyethylene glycol (PEG) in designing solid-solid phase change materials (PCMs) for thermal management and their application to innovative technologies

Swati Sundararajan, Asit B. Samui*, Prashant S. Kulkarni*

Energy and Environment Laboratory, Department of Applied Chemistry, Defence Institute of

Advanced Technology, Deemed University, Girinagar, Pune- 411 025, India.

Fax: +91 20 2691533; Tel: +91 20 24304161, Email: ps kulkarni@rediffmail.com,

absamui@gmail.com

CONTENTS

Table S1 Thermal properties of organic form-stable PEG/PEO based PCMs	3
Table S2 Thermal properties of hybrid form-stable PEG based PCMs.	6
Table S3 Thermal energy storage properties of electrospun fibers.	8
Table S4 Thermal characteristics of PEG based PCMs having inherent	
thermal conductivity.	9
Table S5 Thermal properties of PEG based PCMs having additives for	
improvement of thermal conductivity.	10
Table S6 Thermal properties of chemically modified PEG based SSPCMs.	11
Table S7 Thermal properties of microencapsulated PEG based PCMs.	13
References	14

Page No.

The thermal properties of the organic form-stable PCMs reported in literature have been listed in Table S1. The heat storage efficiency (γ) has been calculated in terms of heat loss percentage by using Eq. 1:¹

$$\gamma = \left(1 - \frac{H_s}{H_m}\right) \times 100 \%$$

where H_s and H_m are solidification and melting enthalpy respectively.

With increasing percentage of heat loss, the efficiency of thermal energy storage decreases. The poly(acrylic acid)-PEG composite shows the lowest heat loss making it a highly efficient PEG based SSPCM whereas the composite of polyurethane prepared with PEG 6000 and graphene has high heat loss making it least efficient among the various organic form-stable materials explored. The use of porous supporting materials allows incorporation of high wt% of PEG thereby yielding high TES capacity.

Table S1 Thermal properties of organic form-stable PEG/PEO based PCMs.

Type of PCM	Hard segment	Soft	Enthalpy	Phase	PEG wt%	Heat	Reference
		segment	of fusion	change		storage	
			(J.g ⁻¹)	temperature		efficiency	
				(°C)		(%)	
Cellulose-PEG	Cellulose	PEG 4000	142.9	52.2	40.0	12.5	2
CDA-PEG	CDA	PEG 4000	104.5	52.0	80.0	-	3
CDA-PEG	CDA	PEG 4000	155.0	52.0	85.0	-	4
Cellulose-PEO	Cellulose	PEO	134.7	63.4	25.0	5.4	5
		13,060					
Carboxymethyl	Carboxymethyl	PEO	140.2	58.4	25.0	1.5	5
cellulose- PEO	cellulose	13,060					
Cellulose ether-	Cellulose ether	PEO	156.8	64.7	25.0	2.2	5
PEO		13,060					
Cellulose-PEG	Cellulose	PEG 4000	84.6	58.5	60.0	6.7	6

Agarose-PEG	Agarose	PEG 4000	110.8	57.7	70.0	10.6	6
Chitosan-PEG	Chitosan	PEG 4000	152.1	57.1	80.0	9.0	6
Cellulose-PEG- GNPs	Cellulose	PEG 6000	156.1	63.0	89.2	4.6	7
Cellulose acetate- PEG	Cellulose acetate	PEG 8000	155.3	60.5	96.5	-	8
PMMA-PEG	PMMA	PEG	141.6	56.9	80.0	1.1	9
Eudragit S-PEG	Eudragit S	PEG	144.2	50.9	80.0	1.8	9
Eudragit E-PEG	Eudragit E	PEG	148.8	56.9	80.0	2.6	9
PMMA-PEG	PMMA	PEG 20.000	121.2	58.0	90.0	10.6	10
Poly(acrylic acid)-PEG	Poly(acrylic acid)	PEG 10,000	135.1	56.3	90.0	0.7	11
Poly(ethylene-co-	Poly(ethylene-co-	PEG 6000	168.3	57.2	75.0	1.8	11
acrylic acid)-PEG	acrylic acid)						
PMMA-PEG- AlN	PMMA	PEG 2000	115.6	46.4	70.0	-	12
PMMA-PEG- GNP	PMMA	PEG 2000	124.4	44.6	69.3	13.7	13
PU-BDO- Graphene	PU + BDO	PEG 6000	160.1	59.4	50.0	14.6	14
PU-n-eicosane	PU + BDO	PEG 10,000 and n-eicosane	141.2	37.9 and 57.4	63.7	9.4	15
PEG-MDI- glucose	Glucose	PEG 8000	131.9	61.1	70.0	7.9	16
PEG-active carbon	Active Carbon	PEG 6000	90.2	62.5	70.0	5.6	17
PEG-EG	EG	PEG	156.0	62.0	90.0	-	18
PEG-AC	AC	PEG	88.0	61.0	70.0	-	18
PEG-CMK-5	CMK-5	PEG	148.0	63.0	90.0	-	18

PEG alkyl ether- porous carbon	Porous carbon	Brij58 (M _n =1124)	-	45.2	70.0	-	19
PEG-porous	Porous carbon	PEG 4000	162.0	60.0	92.5	-	20
carbon from MOF	derived from						
	MOF						
PEG-porous	Porous carbon	PEG 4000	91.8	56.6	50.0	10.8	21
carbon from	derived from						
potato	potato						
PEO-potato	Gelatinized potato	PEO	96.9	57.6	75.0	2.3	22
starch	starch	13,060					
Glucose -PEG	Glucose	PEG	153	-	90.0	-	23
Lactose-PEG	Lactose	PEG	156	-	90.0	-	23
Fructose-PEG	Fructose	PEG	152	-	90.0	-	23
Epoxy-PEG	Ероху	PEG 4000	132.4	54.2	75.0	-	24
PEG-	Poly(acrylonitrile-	PEG 4000	118.5	53.9	73.0	2.3	25
poly(acrylonitrile-	co-itaconate)						
co-itaconate)							

Table S2 lists the thermal properties of hybrid form-stable PEG base PCMs. Fire-retardant composite of PEG-silsesquioxane has been found to be a very efficient material with low heat loss and good thermal energy storage capability. Cement restricts the crystallization of PEG to a great extent thereby incurring high enthalpy loss for PEG-cement composite. The composites of PEG with inorganic hybrid materials offers promising thermal energy storage capacity with increasing molecular weight of PEG reaching a high fusion enthalpy of 162.9 J.g⁻¹ with PEG 10,000 composite with SiO₂.

Type of PCM	Hard segment	Soft	Enthalpy	Phase	PEG wt%	Heat	Reference
		segment	of fusion	change		storage	
			(J.g ⁻¹)	temperature		efficiency	
				(°C)		(%)	
PEG-SiO ₂	SiO ₂	PEG	162.9	61.6	85.0	-	26
PEG-SiO ₂	SiO2	PEG 6000	102.8	56.5	80.0	1.0	27
PEG-SiO ₂	SiO ₂	PEG	74.5	59.3	80.0	-	28
	5102	10.000	, 1.0	09.0	00.0		
PEG-SiO ₂	SiO ₂	PEG 2000	133.9	57.4	80.0	-	29
PEG-SiO ₂	SiO ₂	PEG 2000	122.0	36.0	80.0	3.0	30
PEG-SiO ₂	SiO ₂	PEG 4000	151.8	58.0	79.3	6.6	31
PEG-	AC	PEG 1500	102.0	48.3	80.0	5.4	32
mesoporous							
matrices							
PEG-	SBA-15	PEG 1500	83.0	44.0	80.0	7.1	32
mesoporous							
matrices							
PEG-	MCM-41	PEG 1500	80.0	47.0	80.0	4.7	32
mesoporous							
matrices							
PEG alkyl ether-	MCM-41	Brij 58	81.7	36.7	60.0	4.5	33
porous silica		$(M_n = 1124)$					
PEG alkyl ether-	MCM-41	Brij 76	49.7	33.1	60.0	27.7	33
porous silica		$(M_n = 711)$	1.0.0				1
PEG-radial	Mesoporous	PEG 4000	129.6	57.2	80.0	8.7	1
mesoporous	silica						
silica			00.0	50 0		6.0	24
PEG-	NH ₂ -SBA15-	PEG 2000	88.2	52.0	70.0	6.8	54
mesoporous	CH ₃						
silica		DEC 1000	104.0	22.0	4.4.4	2.1	35
Montmorillonite-	Na-MMT	PEG 1000	104.8	32.9	44.4	2.1	55

Table S2 Thermal properties of hybrid form-stable PEG based PCMs.

PEG							
PEG-polymer	Ероху	PEG 1800	149.4	56.2	60.0	22.8	36
clay							
nanocomposite							
PEG-	Silsesquioxane	PEG 2000	124.7	50.8	81.8	0.6	37
organosiloxane	_						
containing							
phosphamide							
PEG-diatomite	Diatomite	PEG 1000	87.0	27.7	50.0	5.5	38
PEG-diatomite	Diatomite	PEG 4000	105.7	57.9	58.0	9.6	39
PEG-diatomite	Diatomite	PEG 4000	103.7	59.0	55.0	11.2	40
PEG-calcium	Calcium	PEG 4000	122.1	57.0	70.0	12.5	41
silicate	silicate						
PEG-cement	Cement	PEG 1000	23.8	24.3	25.0	44.0	42
Bischofite-PEG	Bischofite	PEG 2000	108.8	98.8	5.0	_	43
PEG-C ₃ N ₄	C_3N_4	PEG 6000	-	-	40.0	-	44
PEG-CNIC	CNIC	PEG 6000	45.8	43.8	60.0	6.7	44

The thermal energy storage properties and average fiber diameter of reported electrospun fibers have been presented in Table S3. Biodegradable PEG-PLA electrospun fibres exhibit good thermal energy storage efficiency incorporating up to 66.7 wt% PEG. The highest phase change enthalpy was reported for Eu-PEG fibres having a value of 141.8 J.g⁻¹ at 63.9 °C and the lowest melting enthalpy was observed for PVA-PEG fibres.

Type of PCM	Hard segment	Soft	Enthalpy	Phase	PEG wt%	Average	Heat	Reference
		segment	of fusion	change		fiber	storage	
			(J.g ⁻¹)	temperature		diameter	efficiency	
				(°C)		(nm)	(%)	
CA-PEG	СА	PEG 10,000	86.0	58.4	85.0	1579	24.2	45
CA-PEG	СА	PEG 10,000	36.7	52.1	-	-	29.5	46
CA-PEG	СА	PEG 1500	39.4	44.2	15.9	384	18.6	47
Polypropylene- poly(N- hydroxymethyl acrylamide)- PEG	Polypropylene	PEG 2000	17.0	54.6	14.0	-	-	48
PEG-poly(dl- lactide)	PLA	PEG	74.7	58.7	66.7	1540	11.5	49
PVP-Eu-PEG	Polyvinyl pyrrolidone	PEG 10,000	141.8	63.9	17.0	989	-	50
Polyamide-6- PEG	Polyamide-6	PEG 4000	58.0	52.0	30.0	104	-	51
Polyamide-6- PEG	Polyamide-6	PEG 1000	100.0	67.0	33.3	59	-	52
PVA-PEG	PVA	PEG 2000	27.8	48.3	22.2	-	-	53
PEG monoester of maleic anhydride	P(AN-co-AM)	MAPEG 4000	66.3	50.7	20.0	448	14.6	54

Table S3 Thermal energy storage properties of electrospun fibers.

Table S4 lists the thermal characteristics of inherently thermally conductive PEG based formstable PCMs. It can be inferred that the introduction of GNPs to PEG-GO composite affords high thermal conductivity of 1.72 W.m⁻¹.K⁻¹ with high thermal storage efficiency. The MWCNT-PEG composite offers high enthalpy efficiency and hybrid graphene aerogels permit high fusion enthalpy of 185.6 J.g⁻¹ with good thermal conductivity of 1.43 W.m⁻¹.K⁻¹. Almost all other composites have comparable heat loss percentages.

|--|

Type of	Hard	Soft	Enthalp	Phase	PEG	Enthalpy	Therm	Referen
PCM	segment	segment	y of	change	wt%	efficiency	al	ce
			fusion	temperat		(%)	conduc	
			$(\mathbf{I} \boldsymbol{\sigma}^{-1})$	ure (°C)			tivity	
			(3.5)					
							(w.m	
							¹ .K ⁻¹)	
PEG-EG	EG	PEG 1000	161.2	61.4	90.0	8.8	1.32	55
PEG-GO	GO	PEG 6000	156.9	62.3	90.0	-	-	56
		DEC (000	142 0	52.9	06.0	5 4		57
PEG-GU	GO	PEG 6000	142.8	32.8	96.0	3.4	-	
PEG-GO	GO	PEG 4000	174.5	62.9	96.0	9.2	-	58
PEG-GO-	GO	PEG	178.1	64.9	96.0	8.1	1.72	59
GNP		10,000						
PEG-GO	GO	PEG 6000	_	45.2	80.0	_	_	60
PEG-SG	SG	PEG 4000	165.1	58.0	96.0	-	1.04	61
MWCNT	MWCNT-	PEG	147.0	62.9	90.0	2.5	-	62
-PEG	OH	10,000						
Hybrid	Graphene	PEG	185.6	64.8	97.7	4.2	1.43	63
graphene	aerogel	10,000						
DL	CE	DEC 2000	20.2	46.1			2.5	64
PU- graphite	GF	PEG 8000	80.3	40.1	-	-	3.5	
foam								
(GF)								
PU-pitch	PGF	PEG 6000	60.3	43.8	73.0	-	10.86	65
based								
graphite								
Ioam								

Table S5 summarizes the thermal properties of various PEG based PCMs to which additives have been incorporated for improvement of thermal conductivity. The addition of GNP has been found to be highly beneficial in gaining high thermal conductivity of 2.33 W.m⁻¹.K⁻¹. On addition of MWCNT to PEG-SiO₂ composite, high enthalpy of 135 J.g⁻¹ was achieved without hampering thermal energy storage efficiency of the composite.

Table S5 Thermal properties of PEG based PCMs having additives for improvement of thermal conductivity.

Type of PCM	Hard	Soft	Thermal	Wt% of	Enthalp	Phase	Thermal	Refere
	segment	segme	conductivi	thermally	y of	change	conductivit	nce
		nt	ty	conductiv	fusion	tempera	y (W.m ⁻¹ .K ⁻	
			enhancer	e filler	(J.g ⁻¹)	ture	1)	
						(°C)		
PEG-graft-	Cellulose	PEG	Ni	6.0	51.0	60.0	0.64	66
cellulose		8000	nanopartic les					
mPEG-g- cellulose	Cellulose	mPEG 5000	EG	10.0	87.6	58.9	0.80	67
PEG-SiO2	SiO2	PEG 1000	AlN	20.0	129.5	61.1	0.56	68
PEG-SiO2	SiO2	PEG 6000	Cu	2.1	110.2	56.6	0.41	69
PEG-SiO2	SiO2	PEG 6000	MWCNT	3.0	135.1	53.3	0.46	70
PEG-PMMA	PMMA	PEG 2000	AlN	30.0	79.2	46.0	0.38	12
PEG-PMMA	PMMA	PEG 2000	GNP	8.0	114.1	41.9	2.33	13
PEG- diatomite	Diatomite	PEG	Ag nanopartic les	7.2	111.3	59.4	0.82	71
PEG- expanded vermiculite	Expanded vermiculite	PEG 4000	Ag nanowire	19.3	99.1	59.9	0.68	72

Table S6 Thermal properties of chemically modified PEG based SSPCMs.

Type of PCM	Hard segment	Soft	Linkage	Enthalpy	Phase	Heat	Reference
		segment		of fusion	change	storage	
				(J.g ⁻¹)	temperature	efficiency	
					(°C)	(%)	
PEG-MDI-BDO	MDI and BDO	PEG 10,000	Urethane	138.7	65.2	9.0	73
PEG-MDI-PE	MDI and PE	PEG 10,000	Urethane	152.9	58.6	-	74
PEG-MDI-PVA	MDI and PVA	PEG 4000	Urethane	72.8	61.1	-	75
PEG-IPDI-BDO	IPDI and BDO	PEG 3400	Urethane	99.0	46.9	18.1	76
PEG-	HMDI	PEG 6000	Urethane	176.0	59.9	0.6	77
diisocyanates							
PEG-MDI-	MDI and THCD	PEG 6000	Urethane	137.4	56.1	7.1	78
multibenzene ring							
tetrahydroxy							
compound							
(THCD)							
PEG-MDI- TABE	MDI and TABE	PEG 6000	Urethane	153.5	48.4	6.2	79
PEG-MDI-β-	MDI and β -	PEG 8000	Urethane	115.2	60.2	3.1	80
cyclodextrin	cyclodextrin						
PEG-MDI-	MDI and Tween	PEG 6000	Urethane	127.7	47.8	1.9	81
trihydroxy	80						
surfactants							
PEG-MDI-	MDI and sorbitol	PEG 8000	Urethane	107.5	59.7	4.2	82
hexahydroxy							
compounds							
PEG-HMDI-	HMDI and castor	PEG 6000	Urethane	117.7	51.4	7.3	83
castor oil	oil						
PEG-	Comb structured	PEG 5000	Urethane	121.9	59.0	3.1	84
diethanolamine-	PU						
IPDI-BDO							
PEG-MDI-	Thermosetting PU	PEG 6000	Urethane	98.2	49.9	3.8	85
diethanolamine							
PEG-MDI-	MDI and MDEA	PEG 10,000	Urethane	152.3	60.8	1.7	86
MDEA-1,3-							
propanesulphonate							
PEG-IPDI-cotton	IPDI and cotton	PEG 8000	Urethane	56.0	62.0	28.5	66
PEG-MDI-HB	MDI and HB	PEG 6000	Urethane	138.2	67.0	4.2	87
polyester	polyester						
PEG-TDI- HB	TDI and HB	PEG 6000	Urethane	124.8	66.6	2.7	88
polyester	polyester						
PEG-MDI-HB	MDI and HB	PEG 6000	Urethane	138.2	67.0	4.2	89
polyester	polyester						
PEG-MDI-HB	MDI, HB	PEG 6000	Urethane	125.0	59.0	3.5	90
polyester-PE	polyester and PE						

PEG-CDA	TDI and CDA	PEG 4000	Urethane	73.6	42.0	-	3
PEG-CDA	TDI and CDA	PEG 10,000	Urethane	142.0	62.0	-	91
mPEG-cellulose	Cellulose	mPEG 2000	Ether	149.1	50.4	11.1	92
mPEG-cellulose	MDI and	mPEG	Urethane	153.6	58.9	0.3	67
	Cellulose						
mPEG-TDI-	TDI and Styrene	mPEG	Urethane	108.5	57.7	24.7	93
styrene							
Poly(PEG methyl	-	PEG methyl	Ester	132.5	44.7	10.4	94
ether		ether					
methacrylate)		methacrylate					
		$(M_n = 2080)$					
Poly(decaglycerol-	Poly(decaglycerol)	PEG 4000	Ester	163.5	51.1	13.5	95
co-ethylene gycol)							
Crosslinked	-	PEGA 4050	Ester	141.3	52.4	13.4	96
PEGA							
Poly(PEG	MMA	PEG	Ester	73.0	41.1	10.9	97
octadecyl ether		octadecyl					
methacrylate)		ether					
PEG-PET	PET	PEG 6000	Ester	26.8	52.2	26.4	98
Eu-PEG	Eu coordinated	PEG 2000	Ester	96.6	72.1	13.89	99
	with						
	phenanthroline						
	and terephthalic						
	acid						
PEG-PAM	PAM	PEG 10,000	Ether	159.4	58.9	13.2	100
				kJ/mol			
PEG-	Poly(glycidyl	PEG 10,000	Ester	73.2	55.9	4.6	101
poly(glycidyl	methacrylate)						
methacrylate)							
PEG-Polystyrene	Polystyrene	PEG 6000	Ether	179.4	44.9	19.9	102
PEG-	Polyacrylonitrile	PEG 4000	Ester	74.1	51.4	11.8	103
Polyacrylonitrile							
PEG-melamine-	Melamine-	PEG 6000	Amine	109.4	57.7	5.1	104
formaldehyde	formaldehyde						
PEG-poly(styrene-	Poly(styrene-co-	PEG 4000	Ester	66.8	23.0	2.0	105
co-acrylonitrile)	acrylonitrile)						
PEG-PHBV	PHBV	PEG 2000	Ester	134.3	56.0	19.28	106
Crosslinked PEG-	Poly(hydroxyethyl	PEG 8000	Ether	144.5	60.9	-	107
poly(hydroxyethyl	methacrylate)						
methacrylate)							

Table S7 Thermal properties of microencapsulated PEG based PCMs.

Type of	Core	Shell	Particl	Phase	Enthalpy	Enthalp	Refere
polymerization	material	material	e size	change	of fusion	У	nce
			(nm)	tempera	(J.g ⁻¹)	efficien	
				ture		cy (%)	
				(°C)			
In-situ	PEG 6000	UF	141 nm	41.9	17.8	-	108
In-situ	n- octadecane and PEG 600	UF	296.7 μm	28.6	3.9	58.9	109
In-situ	Na ₂ CO ₃ , PEG 1000 and n- hexadecane	UF	-	17.7	44.6	4.7	109
Suspension	PEG 800	Polystyrene	0.13 μm	0	0	0	110
Suspension	PEG 1000	Polystyrene	0.14 μm	0	0	0	110

References:

1	X. Min, M. Fang, Z. Huang, Y. Liu, Y. Huang, R. Wen, T. Qian and X. Wu, Sci. Rep., 2015, 5
	12964.

- 2 X.-H. Liang, Y.-Q. Guo, L.-Z. Gu and E.-Y. Ding, *Macromolecules*, 1995, 28, 6551–6555.
- 3 E.-Y. Ding, Y. Jiang and G.-K. Li, J. Macromol. Sci. Part B, 2001, 40, 1053–1068.
- 4 Y. Guo, Z. Tong, M. Chen and X. Liang, J. Appl. Polym. Sci., 2003, 88, 652–658.
- 5 K. Pielichowska and K. Pielichowski, *Polym. Adv. Technol.*, 2011, 22, 1633–1641.
- 6 S. B. Şentürk, D. Kahraman, C. Alkan and İ. Gökçe, *Carbohydr. Polym.*, 2011, 84, 141–144.
- 7 J. Yang, E. Zhang, X. Li, Y. Zhang, J. Qu and Z. Yu, *Carbon*, 2016, **98**, 50–57.
- 8 S. Sundararajan, A. B. Samui and P. S. Kulkarni, *Sol. Energy*, 2017, 144, 32–39.
- 9 C. Alkan, A. Sari and O. Uzun, *AIChE J.*, 2006, **52**, 3310–3314.
- 10 A. Sarı, C. Alkan, A. Karaipekli and O. Uzun, J. Appl. Polym. Sci., 2010, 21, 929–933.
- C. Alkan, E. Günther, S. Hiebler and M. Himpel, *Energy Convers. Manag.*, 2012, 64, 364–370.
- 12 L. Zhang, J. Zhu, W. Zhou, J. Wang and Y. Wang, *Thermochim. Acta*, 2011, **524**, 128–134.
- 13 L. Zhang, J. Zhu, W. Zhou, J. Wang and Y. Wang, *Energy*, 2012, **39**, 294–302.
- K. Pielichowska, M. Nowak, P. Szatkowski and B. Macherzyńska, *Appl. Energy*, 2016, 162, 1024–1033.
- 15 K. Chen, X. Yu, C. Tian and J. Wang, *Energy Convers. Manag.*, 2014, 77, 13–21.
- C. Chen, W. Liu, Z. Wang, K. Peng, W. Pan and Q. Xie, *Sol. Energy Mater. Sol. Cells*, 2014, 134, 80–88.

- L. Feng, J. Zheng, H. Yang, Y. Guo, W. Li and X. Li, *Sol. Energy Mater. Sol. Cells*, 2011, 95, 644–650.
- C. Wang, L. Feng, W. Li, J. Zheng, W. Tian and X. Li, *Sol. Energy Mater. Sol. Cells*, 2012, 105, 21–26.
- 19 L. Zhang, H. Shi, W. Li, X. Han and X. Zhang, Polym. Int., 2014, 63, 982–988.
- 20 J. Tang, M. Yang, W. Dong, M. Yang, H. Zhang, S. Fan, J. Wang, L. Tan and G. Wang, *RSC Adv.*, 2016, 6, 40106–40114.
- B. Tan, Z. Huang, Z. Yin, X. Min, Y. Liu, X. Wu and M. Fang, *RSC Adv.*, 2016, 6, 15821–
 15830.
- 22 K. Pielichowska and K. Pielichowski, J. Appl. Polym. Sci., 2010, 21, 1725–1731.
- C. Alkan, E. Günther, S. Hiebler, Ö. F. Ensari and D. Kahraman, *Polym. Compos.*, 2012, 33, 1728–1736.
- Y. Fang, H. Kang, W. Wang, H. Liu and X. Gao, *Energy Convers. Manag.*, 2010, 51, 2757–2761.
- 25 S. Mu, J. Guo, Y. Yu, Q. An, S. Zhang, D. Wang, S. Chen, X. Huang and S. Li, *Energy Convers. Manag.*, 2016, **110**, 176–183.
- 26 W. Wang, X. Yang, Y. Fang and J. Ding, *Appl. Energy*, 2009, **86**, 170–174.
- 27 B. Tang, J. Cui, Y. Wang, C. Jia and S. Zhang, Sol. Energy, 2013, 97, 484–492.
- 28 H. Yang, L. Feng, C. Wang, W. Zhao and X. Li, *Eur. Polym. J.*, 2012, 48, 803–810.
- 29 J. Li, L. He, T. Liu, X. Cao and H. Zhu, Sol. Energy Mater. Sol. Cells, 2013, 118, 48–53.
- 30 L. He, J. Li, C. Zhou, H. Zhu, X. Cao and B. Tang, *Sol. Energy*, 2014, **103**, 448–455.
- 31 T. Qian, J. Li, H. Ma and J. Yang, Sol. Energy Mater. Sol. Cells, 2015, 132, 29–39.

- L. Feng, W. Zhao, J. Zheng, S. Frisco, P. Song and X. Li, *Sol. Energy Mater. Sol. Cells*, 2011, 95, 3550–3556.
- 33 L. Zhang, H. Shi, W. Li, X. Han and X. Zhang, *Thermochim. Acta*, 2013, **570**, 1–7.
- 34 J. Wang, M. Yang, Y. Lu, Z. Jin, L. Tan, H. Gao, S. Fan, W. Dong and G. Wang, *Nano Energy*, 2016, **19**, 78–87.
- E. Onder, N. Sarier, G. Ukuser, M. Ozturk and R. Arat, *Thermochim. Acta*, 2013, 566, 24–35.
- 36 A. R. Bahramian, L. S. Ahmadi and M. Kokabi, Iran. Polym. J., 2014, 23, 163–169.
- 37 Y. Qian, P. Wei, P. Jiang, Z. Li, Y. Yan and J. Liu, *Appl. Energy*, 2013, **106**, 321–327.
- 38 S. Karaman, A. Karaipekli, A. Sarı and A. Biçer, Sol. Energy Mater. Sol. Cells, 2011, 95, 1647–1653.
- T. Qian, J. Li, X. Min, Y. Deng, W. Guan and L. Ning, *Energy Convers. Manag.*, 2015, 98, 34–45.
- 40 J. Lv, Y. Song, L. Jiang and J. Wang, ACS Nano, 2014, 8, 3152–3169.
- 41 T. Qian, J. Li, X. Min, Y. Deng, W. Guan and H. Ma, *Energy*, 2015, **82**, 333–340.
- 42 H. Li and G.-Y. Fang, Chem. Eng. Technol., 2010, 33, 1650–1654.
- A. Gutierrez, S. Ushak, H. Galleguillos, A. Fernandez, L. F. Cabeza and M. Grágeda, *Appl. Energy*, 2015, **154**, 616–621.
- 44 L. Feng, P. Song, S. Yan, H. Wang and J. Wang, *Thermochim. Acta*, 2015, **612**, 19–24.
- 45 C. Chen, L. Wang and Y. Huang, *Polymer*, 2007, 48, 5202–5207.
- 46 C. Chen, L. Wang and Y. Huang, *Mater. Lett.*, 2009, **63**, 569–571.
- 47 B. Rezaei, M. Askari, A. M. Shoushtari and R. A. M. Malek, *J. Therm. Anal. Calorim.*, 2014, 118, 1619–1629.

- 48 H. Zhang, S. Yang, H. Liu, Y. Fang, S. Jiang, J. Guo and Y. Gong, *J. Appl. Polym. Sci.*, 2013, 129, 1563–1568.
- C. Chen, K. Liu, H. Wang, W. Liu and H. Zhang, *Sol. Energy Mater. Sol. Cells*, 2013, 117, 372–381.
- 50 Q. Shi, Z. Liu, X. Jin, Y. Shen and Y. Liu, *Mater. Lett.*, 2015, 147, 113–115.
- 51 H. Chen, Q. Ma, S. Wang, H. Liu and K. Wang, J. Ind. Text., 2016, 45, 1490–1503.
- 52 A. Babapoor, G. Karimi and M. Khorram, *Appl. Therm. Eng.*, 2016, **99**, 1225–1235.
- 53 Z. Li, W. He, J. Xu and M. Jiang, Sol. Energy Mater. Sol. Cells, 2015, 140, 193–201.
- 54 L. Zhang, J. Guo, X. You, Y. Liu, L. Yang, B. Zhang, S. Zhang and Y. Gong, *High Perform*. *Polym.*, 2016, **28**, 231–238.
- 55 W. Wang, X. Yang, Y. Fang, J. Ding and J. Yan, *Appl. Energy*, 2009, **86**, 1479–1483.
- 56 C. Wang, L. Feng, H. Yang, G. Xin, W. Li, J. Zheng, W. Tian and X. Li, *Phys. Chem. Chem. Phys.*, 2012, 14, 13233–13238.
- 57 G.-Q. Qi, C.-L. Liang, R.-Y. Bao, Z.-Y. Liu, W. Yang, B.-H. Xie and M.-B. Yang, Sol. Energy Mater. Sol. Cells, 2014, 123, 171–177.
- 58 W. Xiong, Y. Chen, M. Hao, L. Zhang, T. Mei, J. Wang, J. Li and X. Wang, *Appl. Therm. Eng.*, 2015, **91**, 630–637.
- 59 G.-Q. Qi, J. Yang, R.-Y. Bao, Z.-Y. Liu, W. Yang, B.-H. Xie and M.-B. Yang, *Carbon*, 2015,
 88, 196–205.
- C. Wang, W. Wang, G. Xin, G. Li, J. Zheng, W. Tian and X. Li, *Eur. Polym. J.*, 2016, 74, 43–
 50.
- 61 H. Li, M. Jiang, Q. Li, D. Li, Z. Chen, W. Hu, J. Huang, X. Xu, L. Dong, H. Xie and C. Xiong,

Energy Convers. Manag., 2013, 75, 482-487.

- 62 L. Feng, C. Wang, P. Song, H. Wang and X. Zhang, *Appl. Therm. Eng.*, 2015, 90, 952–956.
- J. Yang, G. Qi, Y. Liu, R. Bao, Z. Liu, W. Yang, B. Xie and M. Yang, *Carbon*, 2016, 100, 693–702.
- 64 R. Chen, R. Yao, W. Xia and R. Zou, *Appl. Energy*, 2015, **152**, 183–188.
- 65 W. Wu, X. Huang, K. Li, R. Yao, R. Chen and R. Zou, *Appl. Energy*, 2017, **190**, 474–480.
- 66 A. Kumar, P. S. Kulkarni and A. B. Samui, *Cellulose*, 2014, 21, 685–696.
- 67 Y. Li, M. Wu, R. Liu and Y. Huang, Sol. Energy Mater. Sol. Cells, 2009, 93, 1321–1328.
- 68 W. Wang, X. Yang, Y. Fang, J. Ding and J. Yan, *Appl. Energy*, 2009, **86**, 1196–1200.
- 69 B. Tang, M. Qiu and S. Zhang, Sol. Energy Mater. Sol. Cells, 2012, 105, 242–248.
- 70 B. Tang, Y. Wang, M. Qiu and S. Zhang, Sol. Energy Mater. Sol. Cells, 2014, 123, 7–12.
- T. Qian, J. Li, X. Min, W. Guan, Y. Deng and L. Ning, J. Mater. Chem. A, 2015, 3, 8526–
 8536.
- 72 Y. Deng, J. Li, T. Qian, W. Guan, Y. Li and X. Yin, *Chem. Eng. J.*, 2016, **295**, 427–435.
- 73 J.-C. Su and P.-S. Liu, *Energy Convers. Manag.*, 2006, 47, 3185–3191.
- 74 W.-D. Li and E.-Y. Ding, Sol. Energy Mater. Sol. Cells, 2007, 91, 764–768.
- 75 X.-M. Zhou, J. Appl. Polym. Sci., 2009, 113, 2041–2045.
- 76 Q. Meng and J. Hu, Sol. Energy Mater. Sol. Cells, 2008, 92, 1260–1268.
- C. Alkan, E. Günther, S. Hiebler, Ö. F. Ensari and D. Kahraman, *Sol. Energy*, 2012, 86, 1761–
 1769.
- 78 P. Xi, Y. Duan, P. Fei, L. Xia, R. Liu and B. Cheng, *Eur. Polym. J.*, 2012, 48, 1295–1303.

- 79 P. Xi, F. Zhao, P. Fu, X. Wang and B. Cheng, *Mater. Lett.*, 2014, **121**, 15–18.
- K. Peng, C. Chen, W. Pan, W. Liu, Z. Wang and L. Zhu, *Sol. Energy Mater. Sol. Cells*, 2016, 145, 238–247.
- 81 X. Fu, W. Kong, Y. Zhang, L. Jiang, J. Wang and J. Lei, *RSC Adv.*, 2015, 5, 68881–68889.
- 82 C. Chen, W. Liu, H. Wang and K. Peng, *Appl. Energy*, 2015, **152**, 198–206.
- Z. Liu, X. Fu, L. Jiang, B. Wu, J. Wang and J. Lei, *Sol. Energy Mater. Sol. Cells*, 2016, 147, 177–184.
- 84 X. Du, H. Wang, X. Cheng and Z. Du, *RSC Adv.*, 2016, 6, 42643–42648.
- 85 X. Fu, Y. Xiao, K. Hu, J. Wang, J. Lei and C. Zhou, *Chem. Eng. J.*, 2016, **291**, 138–148.
- K. Chen, R. Liu, C. Zou, Q. Shao, Y. Lan, X. Cai and L. Zhai, *Sol. Energy Mater. Sol. Cells*, 2014, 130, 466–473.
- 87 Q. Cao and P. Liu, *Eur. Polym. J.*, 2006, **42**, 2931–2939.
- 88 Q. Cao and P. Liu, J. Mater. Sci., 2007, 42, 5661–5665.
- 89 Q. Cao, L. Liao and H. Xu, J. Appl. Polym. Sci., 2010, 115, 2228–2235.
- 90 L. Liao, Q. Cao and H. Liao, J. Mater. Sci., 2010, 45, 2436–2441.
- 91 Y. Jiang, E. Ding and G. Li, *Polymer*, 2002, **43**, 117–122.
- 92 Y. Li, R. Liu and Y. Huang, J. Appl. Polym. Sci., 2008, 110, 1797–1803.
- 93 P. Xi, X. Gu, B. Cheng and Y. Wang, *Energy Convers. Manag.*, 2009, **50**, 1522–1528.
- 94 B. Tang, Z. Yang and S. Zhang, J. Appl. Polym. Sci., 2012, 125, 1377–1381.
- 95 J. Guo, H. Xiang, Q. Wang, C. Hu, M. Zhu and L. Li, *Energy Build.*, 2012, 48, 206–210.
- 96 H. Zhang, D. Sun, Q. Wang, J. Guo and Y. Gong, J. Appl. Polym. Sci., 2014, 131, 39755.

- 97 J. Meng, X. Tang, Z. Zhang, X. Zhang and H. Shi, *Thermochim. Acta*, 2013, **574**, 116–120.
- 98 J. Hu, H. Yu, Y. Chen and M. Zhu, J. Macromol. Sci. Part B, 2006, 45, 615–621.
- 99 X. Gu, P. Xi, B. Cheng and S. Niu, Polym. Int., 2010, 59, 772–777.
- 100 X.-M. Zhou, J. Appl. Polym. Sci., 2010, 21, 1591–1595.
- 101 C. Chen, W. Liu, H. Yang, Y. Zhao and S. Liu, Sol. Energy, 2011, 85, 2679–2685.
- 102 A. Sarı, C. Alkan and A. Biçer, *Mater. Chem. Phys.*, 2012, 133, 87–94.
- 103 J. Guo, P. Xie, X. Zhang, C. Yu, F. Guan and Y. Liu, J. Appl. Polym. Sci., 2014, 131, 40152.
- 104 L. Yanshan, W. Shujun, L. Hongyan, M. Fanbin, M. Huanqing and Z. Wangang, Sol. Energy Mater. Sol. Cells, 2014, 127, 92–97.
- S.-Y. Mu, J. Guo, Y.-M. Gong, S. Zhang and Y. Yu, *Chinese Chem. Lett.*, 2015, 26, 1364–1366.
- H. Xiang, S. Wang, R. Wang, Z. Zhou, C. Peng and M. Zhu, *Sci. China Chem.*, 2013, 56, 716–723.
- S. Sundararajan, A. B. Samui and P. S. Kulkarni, *Sol. Energy Mater. Sol. Cells*, 2016, 149, 266–274.
- 108 M. Karthikeyan, T. Ramachandran and O. L. S. Sundaram, J. Ind. Text., 2013, 44, 130-146.
- 109 N. Sarier and E. Onder, *Thermochim. Acta*, 2007, **452**, 149–160.
- L. Sánchez, P. Sánchez, A. de Lucas, M. Carmona and J. F. Rodríguez, *Colloid Polym. Sci.*, 2007, 285, 1377–1385.