Electronic Supporting Information

Selective electrochemical CO₂ reduction over highly porous

gold film

Chengzhen Chen^a, Bo Zhang^b, Juhua Zhong^b and Zhenmin Cheng^{*a}

a State Key Laboratory of Chemical Engineering, East China University of Science

and Technology, Shanghai 200237, P. R. China

b Department of Physics, East China University of Science and Technology,

Shanghai 200237, P. R. China

Corresponding author: zmcheng@ecust.edu.cn

Table S1. The bulk pH of aqueous electrolytes before and after CO₂ saturation

Electrolytes	Bulk pH before CO ₂ saturation	Bulk pH after CO ₂ saturation
0.1 M KHCO ₃	8.52	6.81
0.2 M KHCO ₃	8.40	7.10
0.3 M KHCO ₃	8.39	7.15
0.5 M KHCO ₃	8.36	7.23
0.05 M KHCO ₃ + 0.05 M KClO ₄	8.51	6.62
0.1 M KClO ₄	6.63	4.71

Bycarbonate/carbonate electrolytes	Bulk pH
CO ₂ -saturated 0.5 M KHCO ₃	7.23
CO ₂ -saturated 0.94 M KHCO ₃	7.80
0.94 M KHCO ₃	8.22
0.94 M KHCO ₃ +0.0094 M K ₂ CO ₃	8.39
0.94 M KHCO ₃ +0.047 M K ₂ CO ₃	8.70
0.94 M KHCO ₃ +0.094 M K ₂ CO ₃	8.93

Table S2. The bycarbonate/carbonate electrolytes with different bulk pH for Au foil electrolysis at -0.5 V versus RHE

Fig. S1 ¹H-NMR spectrum for (a) standard formate sample: 0.5 mL of 0.5 mM formate sodium solution mixed with 0.1 mL D₂O and 0.1 mL 3 mM DMSO solution added as an internal standard, (b) liquid products of PF-Au-75 at -0.6 V: 0.5 mL electrolyte mixed with 0.1 mL D₂O and 0.1 mL 3 mM DMSO solution. The relative areas were estimated by following equation:

$$_{Relative area (formate)} = \frac{peak area at 8.338 ppm (formate)}{peak area at 2.614 ppm (DMSO)}$$

Fig. S2 (a) Low-magnification and (b) high-magnification SEM images of the PF-Au-75 electrodes after 9 h CO₂ reduction.

Fig. S3 Potential curves for the reduction of AgCl at a constant current density of 10 mA cm⁻² to prepare (a) PF-AuAg-6, (b) PF-AuAg-18, (c) PF-AuAg-75 electrodes in CO₂-saturated 0.1 M KHCO₃ electrolyte.

Fig. S4 (a) Low-magnification and (b) high-magnification SEM images of PF-AuAg-75 electrodes reduced from PF-Au/AgCl-75 precursor at 10 mA cm⁻² in CO₂-saturated 0.1 M KHCO₃ electrolyte.

Fig. S5 Current density curves of Pb UPD stripping on PF-AuAg samples at the potential of 0.650 V (vs. Pb/Pb²⁺).