Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information

A cellulose fibers-supported hierarchical forest-like cuprous oxide/copper array

architecture as a flexible and free-standing electrode for symmetric

supercapacitors

Caichao Wan, Yue Jiao, Jian ${\rm Li}^*$

Material Science and Engineering College, Northeast Forestry University, Harbin

150040, China

*Corresponding author at: Northeast Forestry University, No.26 Hexing Road

Xiangfang District, Harbin 150040, China.

TEL./FAX.: +86 45182192399

E-mail addresses: wancaichaojy@163.com (Caichao Wan)

yjiao123@126.com (Yue Jiao)

lijiangroup@163.com (Jian Li)

Calculation process of Cu₂O theoretical specific capacitance

The theoretical pseudocapacitance of metal oxide can be calculated as (J. Mater. Chem. A, 2014, 2, 18229-18235; Adv. Mater., 2014, 26, 1044-1051):

$$C = \frac{n \times F}{M \times V} \tag{1}$$

where *n* is the mean number of the electrons transferred in the redox reaction, *F* is the Faraday constant, *M* is the molar mass of the metal oxide and *V* is the operating voltage window. Then, we obtained the theoretical capacitance of Cu₂O: $(2\times96485.3383/0.65/143.091)$ F g⁻¹ \approx 2075 F g⁻¹.

Calculation process of mass loading of Cu₂O

The mass of Cu₂O was calculated according to the following steps. Firstly, the mass of the Cu₂O/Cu/cellulose hybrid paper was weighed (coded as m_1) by electronic balance. Secondly, this electrode was dipped into a N₂-saturated 0.1 M HCl solution for about 10 min until no obvious color change occurred. During this step, the Cu₂O layer was removed by the HCl. The resultant was washed with a large amount of distilled water and completely dried at room temperature, and then weighed again (coded as m_2). Finally, the mass of Cu₂O attached on the electrode was calculated to be (m_1 - m_2). The mass loading of Cu₂O per area is 0.26 mg cm⁻².

Calculation process of Brunauer–Emmett–Teller (BET) surface area of Cu₂O component The BET surface areas of the Cu/cellulose paper and Cu₂O/Cu/cellulose hybrid paper are 16.6 and 13.2 m² g⁻¹, respectively. In addition, the mass percent of Cu₂O in the

2

Cu₂O/Cu/cellulose hybrid paper is around 1.3%. Therefore, we can roughly calculate the surface area of Cu₂O component: [(16.6-13.2)/1.3%] m² g⁻¹ \approx 261.5 m² g⁻¹.

Table S1. Comparison of specific capacitance, specific energy and cycling stability of

Electrodes	Туре	Maximum specific capacitance (F g ⁻¹)	Specific energy (W h kg ⁻¹)	Cycling stability	Potential range (V)	Electrolyte	Refs
Cu₂O@Cu nanoneedle arrays//active carbon	Asymmetric	77 (5 mV s ⁻¹)	35.6 (0.9 kW kg ⁻¹)	92% (10000 cycles, 1 A g ⁻¹)	0–1.8	1 М КОН	[54]
Rose rock-shaped nano-Cu ₂ O anchored graphene	Symmetric	92 (1 A g ⁻¹)	25 (0.6935 kW kg ⁻¹)	-	0–1.4	6 М КОН	[52]
Cu ₂ O-Cu(OH) ₂ nanoflakes/graphene/stainles s steel	Symmetric	104 (5 A g ⁻¹)	20.4 (3.6 kW kg ⁻¹)	87% (2000 cycles, 10 A g ⁻¹)	0–1.2	0.5 M Na ₂ SO ₄	[57]
Graphene/polypyrrole/Cu ₂ O– Cu(OH) ₂ /Ni foam	Symmetric	225 (10 A g ⁻¹)	20 (8 kW kg ⁻¹)	90% (2000 cycles, 10 A g ⁻¹)	0–0.8	0.5 M Na₂SO₄	[58]
Cu ₂ O/CuO/Co ₃ O ₄ core-shell nanowires//activated graphene	Asymmetric	-	12 (0.162 kW kg ⁻¹)	-	0–1.4	3 М КОН	[56]
Forest-like Cu ₂ O/Cu array structure	Symmetric	409 (1.9 A g ⁻¹)	24.0 (0.625 kW kg ⁻¹)	90.2% (10000 cycles, 30.8 A g ⁻¹)	0–0.65	1 M KOH	This work

some Cu₂O-based symmetric/asymmetric supercapacitor devices.

Figure S1. Optical photographs of the cellulose paper, Cu/cellulose paper and

Cu₂O/Cu/cellulose hybrid paper.

Figure S2. Cross-section SEM image of the cellulose paper to present its three-

dimensional fibers framework structure.

Figure S3. Barrett–Joyner–Halenda (BJH) desorption pore size distribution of the

Cu₂O/Cu/cellulose hybrid paper.

Figure S4. High-resolution XPS spectrum of Cu 2p core level of the Cu₂O/Cu/cellulose

hybrid paper after the electrochemical tests to demonstrate the plentiful generation

of CuO or Cu(OH)₂.

Figure S5. (a) CV curves of the platinum sheet at various scan rates measured in a

three-electrode configuration. (b) CV curves of the platinum sheet and

Cu₂O/Cu/cellulose hybrid paper-based symmetric supercapacitor device at the scan

rate of 5 mV s⁻¹.

Figure S6. Areal and specific capacitances of the $Cu_2O/Cu/cellulose$ hybrid paper-

based symmetric supercapacitor device at various current densities