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S1 Characterization of Compounds

S1.1 NMR Spectra

Fig. S1. 1H NMR spectrum of 1,3,5,7-tetrakis-(p-phenylmethanol)-adamantane in DMSO-d6



Fig. S2. 13C NMR spectrum of 1,3,5,7-tetrakis-(p-phenylmethanol)-adamantane in DMSO-d6.



Fig. S3. 1H NMR spectrum of 1,3,5,7-tetrakis-(p-benzylbromide)-adamantane in 1,1,2,2-
tetrachlorethane-d2 at 145 oC. Solvent peak is at 6 ppm and signal for the residual undissolved aggregate 
at 1.857 ppm. At RT, this peak is the dominant signal.



Fig. S4. 1H NMR spectrum of 1,3,5,7-tetrakis-(p-benzylazide)-adamantane (TPBA) in CDCl3.



Fig. S5. DEPT 13C NMR spectrum of 1,3,5,7-tetrakis-(p-benzylazide)-adamantane (TPBA) in CDCl3.



S1.2 ATR Spectra
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Fig. S6. ATR spectrum of 1,3,5,7-tetrakis-(p-phenylmethanol)-adamantane.
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Fig. S7. ATR spectrum of 1,3,5,7-tetrakis-(p-benzylbromide)-adamantane.
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Fig. S8. ATR spectrum of TPBA

S2.4 HR Mass Spectra



 Fig. S9. EI Mass spectrum report of 1,3,5,7-tetrakis-(p-phenylmethanol)-adamantane: C38H40O4.

Fig. S10. EI Mass spectrum report of 1,3,5,7-tetrakis-(p-bromobenzyl)-adamantane: C38H36Br4.

Fig. S11. EI Mass spectrum report of 1,3,5,7-tetrakis-(p-benzylazide)-adamantane: C38H36Br4.



S2 UV-Vis spectra of TPBA and PTAA-X films
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Fig. S12. UV-Vis spectrum of TPBA in dichloromethane without (green) and with UV-C irradiation 
(green dashed) and of PTAA, PTAA with 0.2 w.eq. of TPBA, and PTAA-X0.2 in which the TPBA has 
been UV-C irradiate to induce cross-linking.
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Fig. S13. Evolution of the ATR spectra of PTAA films containing 0.2 w.e.q. TPBA with UV-C 
irradiation. The strong absorbance at 2082 cm-1 of the azide group of TPBA decreases with UV-C dosage 
while a new weakly absorbing peak growing in at 1710 cm-1.

S3 Solvent Resistance

Films were deposited on freshly cleaned silicon beams from solutions prepared as described above 

with the following compositions: PTAA-X0.01, PTAA-X0.05, PTAA-X0.1 and PTAA-X0.2. 

Following UV-C irradiation, films were dipped for 30 seconds in toluene, removed and allowed 

to air dry. Films were inspected visually for etching of the deposited film. 
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Fig. S14. Films of PTAA with increasing concentrations of TPBA deposited on silicon and irradiated 
with UV-C for cross-linking were dipped in toluene for 30 s, and dried. Resistance to dissolution is 
achieved by addition of 0.2 w.eq of TPBA. For lower concentrations, the solvent exposure readily 
dissolves the PTAA film exposing the silicon substrate below the dashed white lines indicating the 
solvent edge.

S4 XPS Spectra

After mechanical testing, a survey x-ray photoelectron spectroscopy (XPS, PHI 5000 Versaprobe) 

scan (0 - 1000 eV) was made of each of the fractured specimens using monochromatic Al Kα x-ray 

radiation at 1487 eV to locate the fracture path and thus the weakest layer or interface within the 

test structure. 
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Fig. S15. XPS spectra of the fractured halves of the a) Al side and b) glass side of AzPTMS-treated glass 
with d-PTAA, showing cohesive failure and of the c) Al side and d) glass side of untreated glass with d-
PTAA, showing adhesive failure at the d-PTAA/glass interface.
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Fig. S16. XPS spectra of the fractured halves of the a) Al side and b) glass side of AzPTMS-treated 
glass with PTAA, showing cohesive failure and of the c) Al side and d) glass side of AzPTMS-treated 
glass with PTAA-X, showing cohesive failure.
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Fig. S17. XPS spectra of the fractured halves of the a) Al side and b) glass side of AzPTMS-treated 
glass with doped-PTAA, showing cohesive failure and of the c) Al side and d) glass side of AzPTMS-
treated glass with doped-PTAA-X, showing cohesive failure.
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Fig. S18. XPS spectra of the fractured halves of the a) Al side and b) glass side of d-PTAA coated 
perovskite on glass, showing adhesive failure at the d-PTAA/perovskite interface and of the c) Al side 
and d) glass side of d-PTAA-X coated perovskite on glass, showing cohesive failure.

S5 Max Power Point Tracking 
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Fig. S19. Maximum power point tracking of efficiency of representative conventional (n-i-p) 
perovskite solar cells with varying amounts of TBPA.
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Fig. S20. Maximum power point tracking of representative inverted (p-i-n) perovskite solar cell with 
TBPA.


