Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Electronic Supporting Information:

Truxene based Porous, Crystalline Covalent Organic Frameworks and it's Applications in Humidity Sensing

Harpreet Singh,¹ Vijay K. Tomer,² Nityasagar Jena,² Indu Bala,¹ Nidhi Sharma,² Devadutta Nepak,² Abir De Sarkar^{*},² Kamalakannan Kailasam^{*2}, Santanu Kumar Pal^{*1}

¹ Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, SAS Nagar, Mohali 140306, India. E-mail: <u>skpal@iisermohali.ac.in</u>

² Institute of Nano Science and Technology, Phase 10, Mohali 160062, India. E-mail: <u>abirdesarkar@gmail.com</u> and <u>kamal@inst.ac.in</u> Synthesis Scheme:

Scheme S1 Reaction conditions:(i) PPA, 110 °C (ii) PPE, 140 °C (iii) BBr₃, DCM (iv) 1,4 phenylenediboronic acid, dioxane/mesitylene/methanol (150:30:1), 110 °C.

Scheme S2 Two possible structural arrangement of the precursors to build the periodic crystal lattices, Symmetric-COF-TXDBA (s-COF-TXDBA) and Asymmetric-COF-TXDBA (a-COF-TXDBA).

Scheme S3 (a) Symmetric-COF-TXDBA (s-COF-TXDBA) with symmetric honeycomb like pore produced by symmetric building block; (b) Asymmetric-COF-TXDBA (a-COF-TXDBA) with asymmetric pore shape produced by asymmetric building blocks.

Fig. S1 The IR spectrum of COF-TXDBA (Blue); Compound (d) (Black); 1,4-phenylenediboronic acid (Red).

Fig. S2 | Solid state ${}^{13}C{}^{1}H$ CPMAS NMR of COF-TXDBA.

Fig. S3 | Thermogravimetric analyses (TGA) of as synthesized COF-TXDBA shows minimal weight loss upto 410 °C. The weight loss at lower temperatures < 200 °C is attributed to the evaporation of solvent molecules present in the nano-channels of COF-TXDBA. Further, TGA analysis of sample after the sensing experiment shows nearly 10% weight loss after 250 °C as compare to as synthesized COF-TXDBA, which can be attributed to formation of small amount of oligomers during interaction of water molecule and COF-TXDBA.

Fig.S4 Comparisons between simulated PXRD pattern of s-COF-TXDBA and a-COF-TXDBA shows appearance of sharp intense peaks at low angle regime for s-COF-TXDBA better reproduce the experimental PXRD.

Fig.S5 Simulated PXRD of Symmetric-COF-TXDBA in eclipsed geometry (symmetric hexagonal pore).

Fig.S6 | Simulated PXRD of Symmetric-COF-TXDBA in staggered geometry.

Fig.S7 | Simulated PXRD of Asymmetric-COF-TXDBA in eclipsed geometry (asymmetric hexagonal pore).

Fig.S8 | Simulated PXRD of Asymmetric-COF-TXDBA in staggered geometry.

Dioxane : Mesitylene

Fig. S9 | SEM images of Truxene COF at different Mesitylene and dioxane ratio at different times shows the formation of capsules at Dioxane: Mesitylene ratio 3:2.

¹H NMR spectra of compound (a).

¹³C NMR spectra of compound (a).

¹H NMR spectra of compound (b).

¹³C NMR spectra of compound (b).

¹H NMR spectra of compound (d).

¹³C NMR spectra of compound (d).

Fig S10: (a) %RH dependent stability test of COF-TXDBA is performed by checking its PXRD after each cycle of experiment from 11-98% RH. Sample was vacuum dried at 100 °C after each cycle. PXRD of COF shows that crystallinity of COF-TXDBA remains intact after five cycles of measurements; (b) SEM images of COF-TXDBA after fifth cycle of humidity sensing experiments.

Fig S11: (a)Time-dependent stability test of COF-TXDBA by keeping the sample in 98% RH humidity chamber for 50 min. PXRD was measured after each 10 min intervals shows that long range order of COF-TXDBA reduces with time. (b) SEM images of COF-TXDBA after keeping the sample in 98% RH for long 50 min. (c) Nitrogen isotherm at 77 K for COF-TXDBA Before and After 98% RH for 50 min followed by overnight vacuum drying at 120 °C.

Fig S12: The response of COF-TXDBA monitored at different humidity conditions for 70 days.

Fig. S13 Band gap measurement of COF-TXDBA.

Table T1: A comparison of humidity sensing performance of previously published works.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sr. No.	Material	Order of magnitude change in impedance in complete %RH range	Response time (S)	Recovery time (S)	Hysteresis (%)	Ref
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	NiO-PPY/SBA-15	3.5	45	90		1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	SnO ₂ /SBA-15	4.5	33	50	2.9	2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	Fe/SiO ₂	3.5	20	50		3
silica 2 600 3 5 5 6 Feather like ZnO 2 40 80 6 7 ZnO cauliflowers 20 3 4.16 7 8 ZnO nanotetrapods 36 17 8 9 La ³⁺ and K ⁺ doped 5 11 18 9 10 SnWO ₄ -SnO ₂ 3 30 100 10 11 K ⁺ -doped SnO ₂ 3 80 100 11 LiZnVO ₄ - - - - 12 MgO-KCl/SiO ₂ 4 6 26 4 12 13 WO ₃ -SnO ₂ 3 117 411 3 13 14 Nacl-KIT-6 5 47 150 14 15 MCM-48 fiber 2 15 18 5 15 16 Fe/SnO ₂ 4 1 4 16 17 Nanoporous polymers based on 1.4-divinylbenzene <td>4</td> <td>Li doped mesoporous</td> <td>3</td> <td>21</td> <td>51</td> <td>6</td> <td>4</td>	4	Li doped mesoporous	3	21	51	6	4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		silica					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5	ZnO nanosheets	2	600	3	5	5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	Feather like ZnO	2	40	80		6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	ZnO cauliflowers		20	3	4.16	7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	ZnO nanotetrapods		36	17		8
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	La ³⁺ and K ⁺ doped	5	11	18		9
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		TiO ₂ -10 mol% SnO ₂					
11 K^+ -doped SnO2 LiZnVO43801001112MgO-KCl/SiO2462641213WO3-SnO2311741131314NaCl-KIT-65471501415MCM-48 fiber2151851516Fe/SnO24141617Nanoporous polymers based on $1,4$ -divinylbenzene337541718Graphene/TiO23128680.391819LiCl-PEBAX nanofiber43080negligible1920CeO232-39-10<1	10	SnWO ₄ -SnO ₂	3	30	100		10
LiZnVO ₄ Image: constraint of the system of the syst	11	K ⁺ -doped SnO ₂ -	3	80	100		11
12 MgO-KCl/SiO ₂ 4 6 26 4 12 13 WO ₃ -SnO ₂ 3 117 411 3 13 14 NaCl-KIT-6 5 47 150 14 15 MCM-48 fiber 2 15 18 5 15 16 Fe/SnO ₂ 4 1 4 16 17 Nanoporous 3 3 75 4 17 polymers based on 1,4-divinylbenzene - - 18 Graphene/TiO ₂ 3 128 68 0.39 18 19 LiCl-PEBAX 4 30 80 negligible 19 20 CeO ₂ 3 2-3 9-10 <1		LiZnVO ₄					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	12	MgO-KCl/SiO ₂	4	6	26	4	12
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13	WO ₃ -SnO ₂	3	117	411	3	13
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	14	NaCl-KIT-6	5	47	150		14
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	15	MCM-48 fiber	2	15	18	5	15
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	Fe/SnO ₂	4	1	4		16
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	17	Nanoporous	3	3	75	4	17
1,4-divinylbenzene 1		polymers based on					
18 Graphene/ ΠO_2 3 128 68 0.39 18 19 LiCl-PEBAX 4 30 80 negligible 19 nanofiber 20 CeO ₂ 3 2-3 9-10 <1	10	1,4-divinylbenzene	2	129	(0	0.20	1.0
19LICI-PEBAX nanofiber43080negligible1920CeO232-39-10<1	18	$C_1 \text{ DED A V}$	3	128	08	0.39	18
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19	LICI-PEBAX	4	30	80	negligible	19
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	nanomber	2	2.2	0.10		20
	20		3	2-3	9-10		20 Th:
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	21	COF-IXDBA	3	3/	42	2.5	1 his

References:

- R. Wang, T. Zhang, Y. He, X. Li, W. Geng, J. Tu and Q. Yuan, J. Applied Polymer Science, 2010, 115, 3474-3480.
- 2 V. K. Tomer and S. Duhan, Sens. Actuators B, 2015, 212, 517-525.
- 3 Q. Qi, T. Zhang, X. Zheng and L. Wan, Sens. Actuators B, 2008, 135, 255–261.
- 4 W. Geng, R. Wang, X. Li, Y. Zou, T. Zhang, J. Tu, Y. He, N. Li, *Sens. Actuators B*, 2007, **127**, 323-329.
- 5 F. S. Tsai and S. J. Wang, Sens. Actuators B, 2014, 193, 280-287
- 6 N. Zhang, K. Yu, Z. Zhu and D. Jiang, Sens. Actuators A, 2008, 143, 245-250
- 7 L. L. Wang, H. Y. Wang, W. C. Wang, K. Li, X. C. Wang and X. J. Li, Sens. Actuators B, 2013, 177, 740–744
- 8 Y. Qiu and S. Yang, Adv. Funct. Mater., 2007, 17, 1345-1352
- 9 T. Zhang, R. Wang, W. Geng, X. Li, Q. Qi, Y. He and S. Wang, *Sens. Actuators B*, 2008, **128**, 482-487.
- 10 M. Anbia and S.E.M. Fard, Sens. Actuators B,2011, 160, 215-221.
- 11 R. Sundaram, Sens. Actuators B, 2007, 124, 429-436.
- 12 S. Hu, H. Chen, G. Fu and F. Meng, Sens. Actuators B, 2008, 134,769-772.
- 13 N. K Pandey, A. Roy, K. Tiwari, A. Mishra, A. Rai, S. Jayaswal, M. Rashmi and A. Govindan, *Ist International Symposium on Physics and Technology of Sensors (ISPTS-1), Pune, India*, 2012, 1, 129-132.
- 14 X. He, W. Geng, B. Zhang, L. Jia, L. Duan and Q. Zhang, RSC Adv., 2016, 6, 38391
- 15 Y. Xia, H. Zhao, S. Liu and T. Zhang, RSC Adv., 2014, 4, 2807
- 16 Y. Zhen, F.-H. Sun, M. Zhang, K. Jia, L. Li and Q. Xue, RSC Adv., 2016, 6, 27008
- 17 T. Fei, H. Zhao, K. Jiang and T. Zhang, Sens. Actuators B, 2015, 208, 277
- 18 W. -D. Lin, C.-T. Liao, T.-C. Chang, S.-H. Chen and R.-J. Wu, Sens. Actuators B, 2015, 209, 555
- 19 S. Liang, X. He, F. Wang, W. Geng, X. Fu, J. Ren and X. Jiang, Sens. Actuators B, 2015, 208, 363
- 20 V.R. Khadse, S. Thakur, K.R. Patil and P. Patil, Sens. Actuators B, 2014, 203, 229