Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Polybenzimidazole-based mixed membranes with exceptional high water vapor permeability and

selectivity

¹Faheem Hassan Akhtar, ¹Mahendra Kumar, ¹Luis Francisco Villalobos, ²Hakkim Vovusha,

¹Rahul Shevate, ²Udo Schwingenschlögl, ¹Klaus-Viktor Peinemann*

¹Advanced Membranes and Porous Materials Center, 4700 King Abdullah University of Science

and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia

²Physical Science and Engineering Division (PSE), 4700 King Abdullah University of Science

and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia

*Email: klausviktor.peinemann@kaust.edu.sa

Figure S1: Schematic presentation for measuring water vapor permeation through the mixed matrix membranes. Humidity & temperature sensor (HMT) and mass flow meter (MFM).

Figure S2: Schematic diagram for apparent and actual water vapor pressure values obtained from a water vapor permeability cup.

Figure S3: The WXRD pattern for: a) TiO_2 nanoparticles, carboxylated TiO_2 (cTiO₂) nanoparticles and TiO_2 nanotubes; b) PBI and the mixed matrix membranes containing the fixed amount of TiO_2 nanoparticles, cTiO₂ nanoparticles and TiO_2 nanotubes.

Figure S4: TEM images for: a) TiO_2 nanoparticles; b) alkali treated TiO_2 nanoparticles; c) carboxylated TiO_2 (cTiO₂) nanoparticles and d) TiO_2 nanotubes.

Figure S5: TGA for the mixed matrix membranes with varied amounts of TiO_2 nanoparticles. Inset table shows the weight loss observed for different membranes in the temperature range of 200 °C-700 °C.

Figure S6: TGA of the mixed matrix membranes with varied amounts of carboxylic acid functionalized TiO_2 nanoparticles.

Figure S7: TGA of the mixed matrix membranes with varied amounts of TiO_2 nanotubes.

Figure S8: Hydrogen bond network formed in pure PBI, snapshots from MD simulations showing the H-bonds.

Figure S9: Hydrogen bond network formed in PBI-water cluster when water vapor activity a=0.6, snapshots from MD simulations showing the H-bonds.

Figure S10: Hydrogen bond network formed in PBI-water cluster when water vapor activity a=0.8, snapshots from MD simulations showing the H-bonds.

Figure S11: Hydrogen bond network formed in PBI-water cluster when water vapor activity a=0.95, snapshots from MD simulations showing the H-bonds.

Figure S12: Schematic presentation of reactor used for esterification reaction. Humidity & temperature sensor (HMT) and mass flow meter (MFM).

Figure S13: Effect of ester yield with membrane and with Al foil (closed system).

Figure S14: ¹H NMR spectrum of ethyl acetate when Al foil was used.

Figure S15: ¹H NMR spectrum of ethyl acetate prepared using PBI membrane.

Figure S16: ¹H NMR spectrum of ethyl propionate prepared using PBI membrane.

Figure S17: ¹H NMR spectrum of ethyl butyrate prepared using PBI membrane.

Figure S18: ¹H NMR spectrum of ethyl pentanoate prepared using PBI membrane.

Table S1:	Dual-mode parameters	from Equation 7	for water sorption is	n PBI at 25 °C
-----------	----------------------	-----------------	-----------------------	----------------

Activity range	K_D (cm ³ STP/cm ³ Poly.atm)	<i>b</i> (atm ⁻¹)	C' _H (cm ³ STP/cm ³ Poly)
Sorption	11773.9±940.7	237.35±761.34	13.64±27.63
(0-0.6)			

Sr.	Membrane material	Temperature	Water vapor	Water vapor	Selectivity	Ref.
No.		(°C)	permeance	permeability	H ₂ O/N ₂	
			(GPU)	(Barrer)		
1	PSU HFM	32	529	-	50	1
2	[Emim][Tf ₂ N]	31	635	2.80×10^5	3.80×10^3	2
3	Stabilized triethylene glycol	15-30	223	1.50×10^4	2.0×10^{3}	3
4	PSU/Si-TFC	30	2.2×10^{3}	741	500	4
5	PSU/ HFM PA TFC	30	1.5×10^{3}	505	500	5
6	PESU/PDA-TFC (polydopamine)	30	3.2×10^{3}	-	195	6
7	PESU/PDA-TFC (polydopamine)	30	1.03×10^{3}	473	35	7
8	PEI/Pebax® 1657	21	1.8×10^{3}	3.6×10^3	1.8×10^{3}	8
9	PESU/CA+PEG2000	30	444	444	176	9
10	PSU/BA-TFC (3,5- diaminobenzoic acid)	30	2.2×10^{3}	105	34	10
11	PSU/TFC-TiO ₂	30	1.1×10^{3}	282	548	11
12	PESU/TFC	30	2.0×10^{3}	160	119	12
13	PSU/TFC-cTiO ₂	30	1.3×10^{3}	302	486	13
14	PSU/TFC-OH-TiO ₂	30	1.4×10^{3}	327	510	14
15	NaA zeolite/Ni sheet	32	2.0×10^4	6.10 × 10 ⁴	178 (H ₂ O/air)	15
16	PVA/LiCl-SS scaffold	31	1.7×10^{3}	3.0 × 10 ⁵	2.8 × 10 ³ (H ₂ O/air)	16
17	PVA/TiO ₂ –SS scaffold	24	1.5×10^{3}	-	5.78×10^{3} (H ₂ O/air)	17

Table S2: Comparison of the performance of fabricated membranes with state-of-the-art membranes

18	Pebax [®] 1657/ GO (5-	21	5.0×10^{3}	1.25×10^4	8.0×10^4	18
	layer and 1.6% GO)					
19	Gaphene oxide	30.8	3.0×10^4	1.82×10^{5}	1.0×10^{4}	19
20	Pebax [®] 1074	21	3.2×10^4	1.6×10^{5}	2.0×10^{5}	20
21	Polyactive	30	-	1.4×10^{5}	5.0 × 10 ⁴	21
	(PEO ₇₅ PBT ₂₅)					
22	PSU/13X zeolite	30	127	1.45×10^{4}	1.04×10^{4}	22
23	SPEEK	30	-	6.0×10^{4}	1.0×10^{7}	23, 24
24	SPES	30	-	1.5×10^{4}	2.11×0^{5}	25
25	Polyether-polyurethane	50	3.2×10^3	4.2×10^{4}	390	26
26	Polyethylene	-	-	12	5.71	27
27	Polyvinylalcohal	-	-	19	3.33×10^{4}	27
28	Polypropylene	-	-	68	230	27
29	Polystyrene	-	-	970	400	27
30	Cellulose acetate	-	-	6.0×10^{3}	2.4×10^{4}	27
31	Ethyl cellulose	-	-	2.0×10^{4}	6.06×10^{3}	28
32	Polyvinylchloride	-	-	275	1.25×10^{4}	27
33	Polyamide (PA-6)	-	-	275	1.10×10^{4}	27
34	Polycarbonate	-	-	1400	4.7×10^{3}	27
35	Polyphenyleneoxide	-	-	4.1×10^{3}	1.07×10^{3}	27
36	PDMS	-	-	4.0×10^{4}	140	27
37	Polyimide (Kapton)	-	-	640	5.3 × 10 ⁶	27
38	PAN	-	-	300	1.87×10^{6}	27
39	Polysulfone	-	-	2.0×10^{3}	8.0×10^{3}	27
40	Natural rubber	-	-	2.6×10^{3}	300	27
41	Polyethersulfone	-	-	2.62×10^{3}	1.05×10^4	25, 29
42	PVA/TEG	30	4.8×10^{3}	1.43 × 10 ⁵	3.0×10^{3}	30
43	Poly(acrylamide-co-	35	-	109	-	31
	acrylic acid) (PAMAC)					
44	ETS-4 TFN	30	1.4×10^{3}	527	346	32

45	EVOH/EVA/EVOH	25	-	2.9×10^{3}	4.8×10^{4}	33
46	PBI	22	2.1×10^{3}	4.2×10^{4}	1.42×10^{6}	This
						work
47	PBI/1% TiO ₂ NP	22	3.5×10^{3}	7.1×10^{4}	2.90×10^{6}	This
						work
48	PBI/1% cTiO ₂ NP	22	3.55×10^{3}	7.11×10^{4}	3.05×10^{6}	This
						work
49	PBI/0.5% TiO ₂ NT	22	3.4×10^{3}	6.8×10^{4}	3.9×10^{6}	This
						work

(PDMAEMA): poly(N,N-dimethylaminoethyl methacrylate)

(MMMs) composed of multiwalled carbon nanotubes (MWCNTs) dispersed in isotactic polypropylene (i-PP)

(PAMAC) poly (acrylamide-co-acrylic acid) composite

EVOH/EVA/EVOH: Poly (ethylene-co-vinyl alcohol)/ Poly (ethylene-co-vinyl acetate) three layer membranes

References:

- 1. S. R. Auvil, J. S. Choe and L. J. Kellogg Jr, US Pat., 5259869A, 1993.
- 2. P. Scovazzo, J. Membr. Sci., 2010, 355, 7-17.
- 3. A. Ito, J. Membr. Sci., 2000, 175, 35-42.
- 4. M. I. Baig, P. G. Ingole, W. K. Choi, J.-d. Jeon, B. Jang, J. H. Moon and H. K. Lee, *Chem. Eng. J.*, 2017, **308**, 27-39.
- 5. M. I. Baig, P. G. Ingole, W. K. Choi, S. R. Park, E. C. Kang and H. K. Lee, *J. Taiwan Inst. Chem. Eng.*, 2016, **60**, 623-635.
- 6. P. G. Ingole, W. K. Choi, I.-H. Baek and H. K. Lee, *RSC Adv.*, 2015, **5**, 78950-78957.
- S. H. Yun, P. G. Ingole, K. H. Kim, W. K. Choi, J. H. Kim and H. K. Lee, *Chem. Eng. J.*, 2014, **258**, 348-356.
- H. Lin, S. M. Thompson, A. Serbanescu-Martin, J. G. Wijmans, K. D. Amo, K. A. Lokhandwala and T. C. Merkel, *J. Membr. Sci.*, 2012, 413, 70-81.
- K. Kim, P. G. Ingole, S. Yun, W. Choi, J. Kim and H. Lee, J. Chem. Technol. Biotechnol., 2015, 90, 1117-1123.
- S. H. Yun, P. G. Ingole, W. K. Choi, J. H. Kim and H. K. Lee, *J. Mater. Chem. A*, 2015, 3, 7888-7899.
- P. G. Ingole, M. I. Baig, W. K. Choi and H. K. Lee, J. Mater. Chem. A, 2016, 4, 5592-5604.
- 12. P. G. Ingole, W. K. Choi, G. B. Lee and H. K. Lee, *Desalination*, 2016.
- M. I. Baig, P. G. Ingole, W. K. Choi, S. R. Park, E. C. Kang and H. K. Lee, *J. Membr. Sci.*, 2016, **514**, 622-635.
- P. G. Ingole, M. I. Baig, W. Choi, X. An, W. K. Choi and H. K. Lee, *J. Ind. Eng. Chem.*, 2017, 48, 5-15.
- 15. R. Xing, Y. Rao, W. TeGrotenhuis, N. Canfield, F. Zheng, D. W. Winiarski and W. Liu, *Chem. Eng. Sci.*, 2013, **104**, 596-609.
- 16. D. T. Bui, A. Nida, K. C. Ng and K. J. Chua, J. Membr. Sci., 2016, 498, 254-262.
- 17. T. D. Bui, F. Chen, A. Nida, K. J. Chua and K. C. Ng, Sep. Purif. Rev., 2015, 144, 114-122.
- 18. F. H. Akhtar, M. Kumar and K.-V. Peinemann, J. Membr. Sci., 2017, 525, 187-194.

- Y. Shin, W. Liu, B. Schwenzer, S. Manandhar, D. Chase-Woods, M. H. Engelhard, R. Devanathan, L. S. Fifield, W. D. Bennett and B. Ginovska, *Carbon*, 2016.
- H. Sijbesma, K. Nymeijer, R. van Marwijk, R. Heijboer, J. Potreck and M. Wessling, J. Membr. Sci., 2008, 313, 263-276.
- S. J. Metz, W. Van De Ven, M. Mulder and M. Wessling, *J. Membr. Sci.*, 2005, 266, 51-61.
- 22. A. Wolinska-Grabczyk, P. Kubica, A. Jankowski, M. Wojtowicz, J. Kansy and M. Wojtyniak, *J. Membr. Sci.*, 2016.
- 23. S. Liu, F. Wang and T. Chen, *Macromol. Rapid Commun.*, 2001, 22, 579-582.
- 24. L. Jia, X. Xu, H. Zhang and J. Xu, J. Appl. Polym. Sci., 1996, 60, 1231-1237.
- 25. L. Jia, X. Xu, H. Zhang and J. Xu, J. Polym. Sci., Part B: Polym. Phys., 1997, **35**, 2133-2140.
- 26. R. Huizing, W. Mérida and F. Ko, J. Membr. Sci., 2014, 461, 146-160.
- 27. S. P. Nunes and K. -V. Peinemann, *Membrane technology: In the chemical industry*, 2001, 39-67.
- 28. W. W. Ho and K. Sirkar, Membrane Handbook, Springer, New York, 1992.
- 29. S. Allen, M. Fujii, V. Stannett, H. Hopfenberg and J. Williams, *J. Membr. Sci.*, 1977, **2**, 153-163.
- T. Bui, Y. Wong, K. Thu, S. Oh, M. Kum Ja, K. C. Ng, I. Raisul and K. Chua, *J. Appl. Polym. Sci.*, 2017, **134**.
- 31. S. Roy, C. M. Hussain and S. Mitra, Sep. Purif. Rev., 2013, 107, 54-60.
- 32. X. An, P. G. Ingole, W. K. Choi, H. K. Lee, S. U. Hong and J.-D. Jeon, *J. Membr. Sci.*, 2017, **531**, 77-85.
- J. Soto Puente, K. Fatyeyeva, C. Chappey, S. Marais and E. Dargent, ACS Appl. Mater. Inter., 2017, 9, 6411-6423.