Supplementary Information

A novel strategy for sulfur-doped carbon nanotube as a high-efficient

Pt catalyst support toward methanol oxidation reaction

Jing-Jing Fan,^{a,b} You-Jun Fan,^{*a} Rui-Xiang Wang,^a Sheng Xiang,^a Hua-Guo Tang,^a Shi-Gang Sun^{*b}

^a Guangxi Key Laboratory of Low Carbon Energy Materials, College of Chemistry and Pharmaceutical Sciences,

Guangxi Normal University, Guilin 541004, China

^b State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry

and Chemical Engineering, Xiamen University, Xiamen 361005, China

E-mail: youjunfan@mailbox.gxnu.edu.cn; sgsun@xmu.edu.cn

Fax: +86-773-2120958; +86-592-2180181

Tel: +86-773-5846279; +86-592-2180181

1. FTIR characterization of the prepared materials

Fig. S1 FTIR spectra of AO-MWCNTs (a) PEDOT/AO-MWCNTs (b) and S-MWCNTs (c)

2. Large-area TEM image of Pt/S-MWCNTs

Fig. S2 Large-area TEM image of Pt/S-MWCNTs

3. High-resolution TEM image of Pt/S-MWCNTs

Fig. S3 High-resolution TEM image of Pt/S-MWCNTs

4. S 2p XPS spectrum for PEDOT/AO-MWCNTs

Fig. S4 S 2p spectrum of PEDOT/AO-MWCNTs

5. Performance comparison of different electrocatalysts

Catalyst	$\begin{array}{c} ECSA\\ (m^2 g^{-1}) \end{array}$	Peak current density (forward scan, mA mg ⁻¹ Pt)	Scan rate (mV s ⁻¹)	Methanol concentration (mol L ⁻¹)	Reference
Pt/S-rGO	39.42	465	50	1.0	1
Pt/MnO _x -PEDOT- MWCNTs	48.73	585.1	50	0.5	2
Pt/TMPyP-graphene	126.2	731.8	50	0.5	3
Pt-PSS-G		539.2	50	0.5	4
PA-GNS/Pt	82.9	365.6	25	1.0	5
Pt-on-Pd nanodendrites /graphene	81.6	647.2	50	1.0	6
Pt- _{NR} CeO ₂ /GNs	72.6	498	50	0.5	7
Pt/NCQDs-MWCNT	46.5	420	50	0.5	8
PtZn/MWNT-E		612	50	1.0	9
Pt/C _{Ru-dim}	47.27	344.2	20	0.5	10
Pt/3D-NG	52.2	551.5	50	0.5	11
Pt/S,N-OMC	94	508	50	1.0	12
Pt/S-MWCNTs	161.4	803.9	50	0.5	This work

Table S1 Performance comparison of MOR on the Pt/S-MWCNTs and other published Pt-based electrocatalysts

Supplementary References

- (1) J. Lu, Y. Li, S. Li, S.P. Jiang, Sci. Rep. 6 (2016) 21530/1-12.
- (2) L. Wei, Y.J. Fan, J.H. Ma, L.H. Tao, R.X. Wang, J.P. Zhong, H. Wang, J. Power Sources 238 (2013) 157– 164.
- (3) R.X. Wang, J.J. Fan, Y.J. Fan, J.P. Zhong, L. Wang, S.G. Sun, X.C. Shen, Nanoscale 6 (2014) 14999–15007.
- (4) S. Mayavan, H.S. Jang, M.J. Lee, S.H. Choi, S.M. Choi, J. Mater. Chem. A 1 (2013) 3489–3494.
- (5) L. Li, J. Zhang, Y. Liu, W. Zhang, H. Yang, J. Chen, Q. Xu, ACS Sustainable Chem. Eng. 1 (2013) 527–533.
- (6) S. Guo, S. Dong, E. Wang, ACS Nano 4 (2010) 547–555.
- (7) W. Wang, X. Lu, M. Zhu, Z. Cao, C. Li, Y. Gao, L. Li, J. Liu, Electrochim. Acta 176 (2015) 1338–1342.
- (8) J.J. Zhang, Z.B. Wang, C. Li, L. Zhao, J. Liu, L.M. Zhang, D.M. Gu, J. Power Sources 289 (2015) 63-70.
- (9) Z. Qi, C. Xiao, C. Liu, T.W. Goh, L. Zhou, R. Maligal-Ganesh, Y. Pei, X. Li, L.A. Curtiss, W. Huang J. Am. Chem. Soc. 139 (2017) 4762–4768.

- (10) A.A. Siller-Ceniceros, M.E. Sánchez-Castro, D. Morales-Acosta, J.R. Torres-Lubian, E. Martínez G., F.J.
 Rodríguez-Varela, Appl. Catal. B 209 (2017) 455–467.
- (11) L. Zhao, X.L. Sui, J.L. Li, J.J. Zhang, L.M. Zhang, Z.B. Wang, ACS Appl. Mater. Interfaces 8 (2016) 16026–16034.
- (12) Y. Chang, F. Hong, J. Liu, M. Xie, Q. Zhang, C. He, H. Niu, J. Liu, Carbon 87 (2015) 424-433.