Porous Hollow Carbon Nanospheres Embedded with Well-Dispersed Cobalt Monoxide Nanocrystals as Effective Polysulfide Reservoirs for High-Rate and Long-Cycle Lithium-Sulfur Batteries

Shikui Wu,^{*#a} Yingze Wang,^{#b} Shengsang Na,^{*c} Chaojun Chen,^a Tengfei Yu,^a Huanyun Wang,^a and Huimin Zang,^a

^a College of Pharmacy, Inner Mongolia Medical University, No.5 Xinhua west street,
Hohhot 010059, PR China. *E-mail: shikuiwu@yahoo.com, Fax:+86 04716653172,
Tel: +86 04716653172.

^b. College of biological science and engineering, Hebei university of science and technology, No.26 Yuxiang street, Shijiazhuang, Hebei, P.R. China 050018

^c Academy of Mongolia Medicine, Inner Mongolia Medical University, No.5 Xinhua west street, Hohhot 010059, PR China.

#Dual contributors

Table S1. Performance comparison of CoO/HCN material with other representative

Ref	Host material	Current rate (C)	Cycle number	Canacity (mAh σ^{-1})	Capacity retention
Kei.	(morphology)			Capacity (IIIAII g)	(%)
This work	CoO nanocrystals embedded HCN	0.2	200	996	80.2
		1.0	1000	629	66.9
		2.0	1000	482	57.4
[17]	Polypyrrole-MnO ₂	1.0	500	550	65.0
	Coaxial Nanotubes				
[23]	cobalt and	1.0	500	625	54.3
	N-doped graphitic				
	carbon				
[37]	TiO ₂ coated N-doped	1.0	500	628	57.0
	graphene				
[51]	Nitrogen-doped	0.5	200	520	62.0
	double-shelled				
	hollow carbon				
	spheres				
[52]	Nitrogen-doped	0.2	100	980	88.0
	hollow carbon				
	nanospheres				
[54]	PANI shell	0.2	200	780	67.8
[55]	PEDOT coated	0.2	100	927	70.8
	rGO/ZIF-8				
[56]	TiO ₂ hollow spheres	0.5	700	580	53.1
[57]	Hydrogen reduced	0.2	200	890	80.9
	TiO ₂				
[58]	TiN nanotube	0.5	500	644	65.2
[59]	Si/SiO ₂ @C	0.2	100	833	78.2

host materials in literatures [13,19,33,47,48,50-56].

Fig. S1. XRD pattern of the HCN material, showing the typical diffraction peak of carbonaceous material.

Fig. S2. Raman spectrum of the HCN material. The intensity ratio of D and G band is *ca.* 0.71, suggesting the moderate graphitic degree of carbon.

Fig. S3. XRD pattern of the CoO/HCN material. The observed diffraction peaks can be ascribed to the CoO (JCPDS card, No. 65-2902).

Fig. S4. SEM image of the SiO₂@RF material. The SEM observation reveals the uniform distribution of SiO₂@RF nanospheres.

Fig. S5. TEM images of CoO/HCN-S composite, showing the morphology similar to that of CoO/HCN material.

Fig. S6. XRD pattern of the CoO/HCN-S composite. The observed diffraction peaks can be ascribed to HCN material, CoO nanocrystals and sulfur powder.

Fig. S7. EDX spectrum of the CoO/HCN-S composite. The EDX spectrum suggests the co-existence of C, Co, O and S elements, and the sulfur content was measured to be 73.3 wt.%.

Fig. S8. TGA curve of CoO/HCN material annealed under air from room temperature to 800 °C.

Fig. S9. (a) N_2 adsorption/desorption isotherms and (b) pore size distribution of CoO/HCN material.

Fig. S10. Survey XPS spectrum of the CoO/HCN-S composite. C, Co, O and S elements are detected, consistent with the result of EDX spectrum.

Fig. S11. XPS results of CoO/HCN-S composite. High-resolution XPS spectrum at (a) Co 2p region and (b) S 2p region.

Fig. S12. Thermo gravimetric analysis (TGA) curve of CoO/HCN-S composite under N_2 atmosphere from room temperature to 600 °C with ramping rate of 10 °C/min. The sulfur content is determined to be 71.3 wt.%.

Fig. S13. XRD pattern of the HCN-S composite, indicating the existence of sulfur in HCN-S composite.

Fig. S14. Morphology and composition characterizations of HCN-S composite. (a) SEM image and (b) EDX spectrum of HCN-S composite.

Fig. S15. TGA curve of HCN-S composite under N_2 atmosphere from room temperature to 600 °C with ramping rate of 10 °C min⁻¹. The sulfur content is determined to be 80.4 wt.%.

Fig. S16. CV curves of (a) CoO/HCN-S and (b) HCN-S composite cathodes at a scan rate of 0.2 mV s⁻¹.

Fig. S17. Electrochemical performance of CoO/HCN material as anode in lithium-ion batteries at 100 mA g⁻¹.

Fig. S18. Cycling performance of CoO/HCN-S composite cathode at 1.0 C in the electrolyte without LiNO₃ additive.

Fig. S19. (a,b) Morphology characterization of CoO/HCN-S composite after cycling for 1000 cycles at 2.0 C. The SEM observations reveal the structure similar to that of CoO/HCN material, indicating its highly structural integrity.