Electronic Supplementary Information for "Poly(vinylbenzyl chloride)-based poly(ionic liquids) as membranes for CO₂ capture from flue gas".

D. Nikolaeva,^a I. Azcune^b, E. Sheridan^c, Marius Sandru^c, A. Genua^b, M. Tanczyk^d, M. Jaschik^d, K. Warmuzinski^d, J.C. Jansen^e and I.J.F. Vankelecom^{*a}

Introduction

1 On the role of CO₂ affinity

Although, the role of CO_2 affinity towards PILs has been widely acknowledged, the underlying fundamentals have never been systematically studied. For polymerized ILs, a study on the CO_2 sorption revealed a clear influence of the chemical composition of cationic pendants and anions.¹ The reported results suggest that CO_2 sorption in studied PILs with identical cationic species decreases in the row of anions as follows: $[PF_6] > [BF_4] > [Tf_2N]^-$. Moreover, the capability of IL-based materials to absorb CO_2 decreases in the following order P[VBTMA]⁺>P[MATMA]⁺>[DTEA]⁺>[bmim]⁺>[VBTMA]⁺>[MATMA]⁺ for the identical anion [BF₄]. The DMM parameters derived in this study were based on the sorption experiments up to 1 bar.¹ Even though, the sorption isotherms have been successfully fitted into DMM, the pressure range can be considered insufficient for that kind of approximation.² Additionally, the influence of the material history was demonstrated on the PILs synthesized from the neutral polymers.³⁻⁴ The post-modified P[VBTMA][AC] and P[VBTMA][BF₄] were prepared from commercially available PVBC via anion metathesis. Remarkable, the Langmuir saturation constant increased in 7 times when compared to pristine material.³ The comparison of CO₂ sorption isotherms reported for P[VBTMA][BF₄] demonstrated a strong disagreement between the measurements (Fig.1). This clearly signifies the variability in the synthesized PILs, that is often observed when obtained in batches on the lab-scale.

Fig. 1 Overview of CO₂ sorption isotherms reported for PILs based on the P[VBTMA]⁺ polycation. The data adopted from (i)³, (ii)⁴, (inlet)¹.

2 Separation performance of PILs-based membranes reported in the literature

Table 1 Summary of physicochemical properties and separation performance of PILs.

Precursor ^a	Treatment	PILs	Membrane		Performance		Comments	Reference
			Sample ^b	δ ^c _{AL} [μm]	$\alpha^{d}_{CO2/N2}$	P ^e _{co2} [Barrer]		
Styrene/ acrylate-based RTIL monomers	Photoinitiated polymerisation		Т	145	28 - 32	7 - 32	ideal permselectivity	6
OEG1, OEG2, (CH₂)₃CH,(CH₂)₅CN	Photoinitiated polymerisation	PILs with polar substituents	Т	145	37 - 44	4.1 - 22	ideal permselectivity	7
Styrene/Imim-based RTIL	Photoinitiated polymerisation in presence of IL		Т	200	39	44	ideal permselectivity	8
P[DADMA]Cl	Anion methathesis		-	-	114.3	-	sorption selectivity	3
PBI	Polycondensation		-	-	2.66 - 12.60	-	sorption selectivity	9
[EMIM][BF ₄]; PVDF-HFP	Polymer conditioning with IL	Polymer gel membranes	Т	100 - 200	50 - 60	45 - 400	mixed-gas selectivity; CO ₂ /N ₂ =50/50 2 atm; 35 - 45 °C	10

^a Precursor material abbreviation as used in the reference.

^b Morphology of the selective layer abbreviated as 'T' and 'TFC' for thick dense and thin film composite membranes, respectively. '-' marks the materials which were to brittle to obtain a membrane sample.

^c Thickness of the selective layer.

^d Selectivity for CO₂

^e Permeability for CO₂

AAIL	Photoinitiated polymerisation in presence of IL	Polymer gel membranes	т	300	60 - 230	1000 - 10000	mixed-gas selectivity; CO ₂ /N ₂ =2.5:97.5 2.5 kPa; 373K	11
DAB; Bul	Polycondensation	Diff. degree of N- quaternisation	Т	100	11 - 21	15 - 40	ideal permselectivity 20 atm; 30 °C	12
[ViEhIm][NTf ₂]; [ViEtPy][NTf ₂]; [Pyrr11][NTf ₂]; [EMTMA][NTf ₂]; [EMCh][NTf ₂]	Free radical polymerisation; conditioning with ILs		T	145 - 190	20 - 34	3 - 20	ideal permselectivity 20 °C	13
P[DADMA]Cl	Anion metathesis; conditioning with IL		Т	120 - 150	40 - 65	3 - 440	ideal permselectivity 20 °C	14
midazolium-based poly(RTIL) and an alkyl non-ionic polymer.	Living polymerisation		TFC	13 - 18	9 - 27	30 - 9300	ideal permselectivity	15
PTAUDMA	Removal of the protective group and simultaneous thio- Michael reaction		Т	-	24	71	ideal permselectivity	16
Pebax® 1657, 2533; [BMIM][Tf₂N]	Polymer conditioning with IL	Polymer gel membranes	Т	-	40	300	ideal permselectivity	17
[EMIM][Tf ₂ N]; p(VDF-HFP)	Polymer conditioning with IL	Polymer gel membranes	Т	-	30	533	ideal permselectivity	18
[EMIM][TFSI]; [HdMIM][TFSI]; p(VDF- HFP)	Polymer conditioning with IL	Polymer gel membranes	Т	-	27	14	ideal permselectivity	19
Poly(diphenylacetylene)s imidazolium salts			Т	50 - 60	11 - 16	1.5 - 250	ideal permselectivity	20
PVC	Atom transfer radical polymerisation		Т	80	20 - 25	7.5 - 137	ideal permselectivity	21

References

- 1 J. Tang, Y. Shen, M. Radosz and W. Sun, in Ind. Eng. Chem. Res., 2009, 48, 9113-9118.
- 2 S. Kanehashi, M. Kishida, T. Kidesaki, R. Shindo, S. Sato, T. Miyakoshi and K. Nagai, in *J. Membr. Sci.*, 2013, **430**, 211-222.
- 3 R.S. Bhavsar, S.C. Kumbharkar and U.K. Kharul, in J. Membr Sci., 2012, 389, 305-315.
- 4 A. Blasig, J. Tang, X. Hu, Y. Shen and M. Radosz, in *Fluid Phase Equilibria*, 2007, **256**, 75-80.
- 5 L. Ansaloni, J.R. Nykaza, Y. Ye, Y.A. Elabd and M.G. Baschetti, in *J. Membr. Sci.*, 2015, **487**, 199-208.
- 6 J.E. Bara, S. Lessmann, C.J. Gabriel, E.S. Hatakeyama, R.D. Noble and D.L. Gin, in *Ind. Eng. Chem. Res.*, 2007, **46**, 5397-5404.
- 7 J.E. Bara, C.J. Gabriel, E.S. Hatakeyama, T.K. Carlisle, S. Lessmann, R.D. Noble and D.L. Gin, in *J. Membr. Sci.*, 2009, **321**, 3-7.
- 8 J.E. Bara, E.S. Hatakeyama, D.L. Gin and R.D. Noble, in *Polym. Adv. Technol.*, 2008, **19**, 1415-1420.
- 9 R.S. Bhavsar, S.C. Kumbharkar and U.K. Kharul, in J. Membr. Sci., 2014, 470, 494-503.
- 10 S.U. Hong, D. Park, Y. Ko and I. Baek, in Chem. Commun., 2009, 46, 7227-7229.
- 11 S. Kasahara, E. Kamio, A. Yoshizumi and H. Matsuyama, in Chem. Commun., 2014, 50, 2996-2999.
- 12 A.S. Rewar, R.S. Bhavsar, K. Sreekumar and U.K. Kharul, in J. Membr. Sci., 2015, 481, 19-27.
- 13 L.C. Tomé, A.S.L. Gouveia, C.S.R. Freire, D. Mecerreyes and I.M. Marrucho, in *J. Membr. Sci.*, 2015, **486**, 40-48.
- 14 L.C. Tomé, M. Isik, C.S.R. Freire, D. Mecerreyes and I.M. Marrucho, in J. Membr. Sci., 2015, 483, 155-165.
- 15 P.T. Nguyen, E.F. Wiesenauer, D.L. Gin and R.D. Noble, in *J. Membr. Sci.*, 2013, **430**, 312-320.
- 16 B.J. Adzima, S.R. Venna, S.S. Klara, H. He, M. Zhong, D.R. Luebke, M.S. Mauter, K. Matyjaszewski and H.B. Nulwala, in *J. Mater. Chem. A*, 2014, **2**, 7967-7972.
- 17 P. Bernardo, J.C. Jansen, F. Bazzarelli, F. Tasselli, A. Fuoco, K. Friess, P. Izák, V. Jarmarová, M. Kačírková and G. Clarizia, in *Sep. Purif. Technol.*, 2012, **97**, 73-82.
- 18 K. Friess, J.C. Jansen, F. Bazzarelli, P. Izák, Veronika Jarmaková, M. Kačírková, J. Schauer, G. Clarizia and P. Bernardo, in *J. Membr. Sci.*, 2012, **415-416**, 801-809.
- 19 J.C. Jansen, G. Clarizia, P. Bernardo, F. Bazzarelli, K. Friess, A. Randová, J. Schauer, D. Kubicka, M. Kačírková and P. Izák, in *Sep. Purif. Technol.*, 2013, **109**, 87-97.
- 20 T. Sakaguchi, H. Ito, T. Masudo and T. Hashimoto, in Polymer, 2013, 54, 6709-6715.
- 21 W.S. Chi, S.U. Hong, B. Jung, S.W. Kang, Y.S. Kang and J.H. Kim, in J. Membr. Sci., 2013, 443, 54-61.