Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017^{adjust margins}

Journals of Materials Chemistry A

Supporting Information

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Enhanced Enzymatic and *Ex Situ* Biodegradation of Petroleum Hydrocarbons in Solutions using *Alcanivorax borkumensis* Enzymes in the Presence of Nitrogen, and Phosphorous Co-doped Reduced Graphene Oxide as a Bacterial Growth Enhancer

Farzin Nekouei*, Shahram Nekouei

Total protein and Enzymes activities assays

Total protein assay: The procedure is summarized in the following steps: (1) preparation of a series of bovine serum albumin solutions (30 to 150 μ g mL⁻¹) in the same buffer or solvent used to prepare the sample; (2) addition of 1.0 mL of the protein-containing sample to 0.90 mL of Hartree-Lowry reagent A (2 g KNaC₄H₄O₆·4H₂O + 100 g Na₂CO₃ +500 mL 1 N NaOH + 500 mL H₂O) in all tubes containing different concentrations of bovine serum albumin solutions; (3) Incubation of all samples in a water bath (50 °C) for 10 min; (4) cooling all tubes to room temperature and addition of Hartree-Lowry reagent B (2 g KNaC₄H₄O₆·4H₂O + 1 g CuSO₄.5H₂O + 10 mL 1 N NaOH + 90 mL H₂O +) to each tube and incubation for 10 min at room temperature; (5) fast addition of 3 mL Hartree-Lowry reagent C (dilution of Folin Ciocalteau reagent with water by the ratio of 1:15) to each tube and mixing and incubation in a 50 °C for 10 min and cooling to room temperature (assay volume: 5 mL); (6) spectrophotometric measurements at 650 nm and

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran

^{*}F.nekouei@hotmail.com; Fa.nekouei@gmail.com

[†] Footnotes relating to the title and/or authors should appear here.

ARTICLE

determination of the protein concentration by interpolation from the plot (Abs. vs µg serum albumin).

Lipase assay: 40 mg of *p*NPP was dissolved in 12 mL of propane-2-ol and added to 9.5 mL of a solution containing 0.1 g of gum Arabic and 0.4 g of Triton X-100 in 90 mL of distilled water under rigorous stirring condition for 2 h. After incubating the mixture consisted of 0.9 mL of substrate solution, 0.1 mL of suitable buffer (0.5 M) and 0.1 mL of suitably diluted enzyme at 50 °C for 30 min, the released *p*-nitrophenol was determined at 410 nm in Spectronic-117 spectrophotometer. One unit of enzyme activity was defined as 1 µmol of *p*-nitrophenol released per minute.

Esterase assay: a reaction mixture was prepared by mixing 980 μ L of *p*nitrophenylbutyrate (0.56 mM) solution in 50 mM potassium phosphate buffer (pH 7) with 11.3 mM sodium cholate and 0.43 M tetrahydrofuran. 20 μ L of sample was added to the reaction mixture and monitored against blank solution for 15 min. One unit of esterase activity was defined as the amount of esterase required to release 1 μ mol of *p*nitrophenol in one minute, under the specified conditions. All the enzymes were tested in triplicates.

Alkane hydroxylase assay: After diluting the supernatant containing the enzyme into a mixed solution containing 200 μ L phosphate buffer (0.1 M, pH 8), alkane substrate (0.5-1 mM), and dimethyl sulfoxide (DMSO; 1%, v/v), alkanes (in DMSO) were added to the buffer. 300 μ L NADPH (200 μ M, as reducing agent) was added to the above mixture and the reaction was measured spectrophotometrically at 340 nm.

Table(s)

Sample	N level, at.%	O level, at.%	C level, at.%	P level, at.%
GO	0.50	30.47	68.05	-
N-rGO	6.85	10.45	82.35	-
N-P-rGO	6.70	9.1	81.49	1.05

 Table S1. Chemical compositions of synthesized materials using XPS analysis.

Table S2. Summary of results related to the effect of nutrients (N a	and P) on A.	borkumensis gro	wth with
hexadecane.			

Bacteria environment	Average lag time, λ (h)	Average specific growth rate (cells/h) ^a	Max bacteria concentration (cells/mL)
N-P-rGO	11	4.35×10^{7}	5.59 × 10 ⁸
N-rGO	15	3.70×10^{7}	6.35 × 10 ⁸
GO	38	2.32×10^{7}	9.62 × 10 ⁸
Only bacteria	40	2.28×10^{7}	9.92 × 10 ⁸

^a All experiments were Run two times with three replicates each. Error was calculated according to the standard deviation of all six replicates. An error of 20% would be surmised for all calculated growth rates.

Table S3. Summary of results corresponded to the effect of N-P-rGO dose on A. borkumensis grow	th
with hexadecane.	

N-P-rGO dose (g/ L)	Average lag time, ^λ (h)	Average specific growth rate (cells/h) ^a	Maximum bacteria concentration (cells/mL)
0	40	2.28×10^{7}	9.92 × 10 ⁸
0.25	33	2.74×10^{7}	9.84×10^{8}
0.5	25	3.26×10^{7}	8.95 × 10 ⁸
0.75	17	3.80×10^{7}	7.26 × 10 ⁸
1.0	11	4.35×10^{7}	5.59 × 10 ⁸

^a All experiments were Run two times with three replicates each. Error was calculated according to the standard deviation of all six replicates. An error of 20% would be surmised for all calculated growth rates.

31°C, pH 8.0, 120 rpm.				
Cycle no.	Removal (%)	N content (at.%)	P content (at.%)	
1	96.7	6.40	1.00	
2	94.5	6.00	0.94	
3	90.8	5.10	0.85	
4	78.6	2.10	0.35	

Table S4. Recovery efficiency of N-P-rGO for hexadecane (5%, 4000 ppm) after 7 days. Culture conditions: 31 °C, pH 8.0, 120 rpm.

Figure(s)

Fig. S1. (a) Specific surface areas of GO, N-rGO, and N-P-rGO; (b) Pore size distribution of GO, N-rGO, and N-P-rGO.

Fig. S2. High resolution spectrum of C 1s for N-P-rGO.

Fig. S3. TGA curves of GO, N-rGO, and N-P-rGO.

Fig. S4. IR spectra of GO, N-rGO, and N-P-rGO.

Fig. S5. Evolution of enzymes activities and protein contents during the biodegradation processes for hexadecane and BTEX. Culture conditions: 31°C, pH 8.0, 120 rpm, 7 days.

S6. Removal percentage of BTEX compounds in different concentrations in the presence of: **(a-c)** N-P-rGO; **(d-f)** N-rGO; **(g-i)** GO; **(j-l)** only bacteria within 7 days using the crude enzyme produced by *A. borkumensis*. Culture conditions: 31 °C, pH 8.0, 120 rpm.

Fig. S7. The effect of N-P-rGO dose on the hexadecane removal within 7 days using the crude enzyme produced by *A. borkumensis*. Culture conditions: 31 °C, pH 8.0, 120 rpm.

Fig. S8. Schematic illustration the effects of higher interfacial area and hydrophobic adsorption of hexadecane in the presence of N-P-rGO.

Fig. S9. The effect of GO dose on the hexadecane removal within 7 days using the crude enzyme produced by *A. borkumensis*. Culture conditions: 31 °C, pH 8.0, 120 rpm.

11

Fig. S10. Mineralisation assays for the ¹⁴C-labelled of (a) hexadecane (6000 ppm) and (b-g) BTEX compounds (75 ppm).

Scheme S1. Schematic structure of N-P-rGO is presented in Scheme S1.

13