Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Fabrication and Electrochemical Performance of Unprecedented

POM-Based Metal-Carbene Frameworks

Pei-Pei Zhu,^a Ning Sheng,^a Meng-Ting Li,^c Ji-Sen Li,^a Guo-Dong Liu,^a Xi-Ya Yang,^a

Jing-Quan Sha,^{a,b*} Meng-Liang Zhu,^b and Jianzhuang Jiang^{b*}

- ^a Key Laboratory of Inorganic Chemistry in Universities of Shandong, Department of Chemistry and Chemial Engineering, Jining University, Qufu, Shandong, 273155, China. *E-mail: <u>shajq2002@126.com</u>
- ^b Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China. *E-mail: <u>jianzhuang@ustb.edu.cn</u>
- ^c Institute of Functional Material Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun, 130024 Jilin, China

Experimental Section

All chemical materials were commercially purchased and used without further purification. The Elemental analyses(C, H, and N) were measured by the Perkin-Elmer 2400 CHN elemental analyzer. The FT-IR was obtained from the Alpha Centaurt FT/IR spectrometer with KBr pellets. The power X-ray diffraction (PXRD) patterns were scanned by the Rigaku D/MAX 2500 V XRD diffractometer with Cu-K α radiation. The TG analyses were performed on a Perkin-Elmer TGA7 instrument in flowing N₂ with a heating rate of 10 °C min⁻¹. Galvanostatic charge/discharge cycles were performed on a LAND 2001A Battery Tester between 0.01 and 3.00 V at various current densities. Cyclic voltammetry measurements were carried out on an electrochemical workstation (CHI750D) in the potential range of 0.01 - 3.00 V vs. Li⁺/Li at a scan rate of 0.1 mV s⁻¹.

Synthesis of [$Cu_{10}(H_3trz)_4(Htrz)_4$] ($HPW_{12}O_{40}$) (1). H₃PW₁₂O₄₀ (300 mg, 0.15 mmol), Cu(CH₃COO)₂ (150 mg, 0.75 mmol) and 1,2,4-trz ligand (80 mg, 1.16 mmol) were dissolved in distilled water (10 mL) with stirring for 30 min at room temperature, and pH value was adjusted to *ca*. 1.5 by 1 M HCl. The resulting solution was transferred and sealed in a 20 mL Teflon-lined stainless steel reactor and heated at 180 °C for 5 days. After the autoclave was cooled to room temperature at 10 °C ·h⁻¹, the black block crystals of **1** were obtained, and then washed with distilled water and air-dried (yield: 46% based on Cu). Elemental analysis: Anal. calcd for C₁₆H₁₇Cu₁₀N₂₄O₄₀PW₁₂ (4058.08): C 4.75, H 0.42 and N 8.28 %; Found C 4.70, H 0.51 and N 8.26 %. IR (KBr pellet, cm⁻¹): 3434 (*m*), 3106 (*w*), 1633 (*m*), 1484 (*m*), 1284 (*m*), 1164 (*m*), 1056 (*s*), 941 (*s*), 804 (*vs*), 653 (*s*), 514 (*m*).

Synthesis of $[Cu_{10}(H_3trz)_4(Htrz)_4]$ $(H_2SiW_{12}O_{40})$ (2). The preparation of 2 was similar to 1, except that the H₃PW₁₂O₄₀ was replaced by H₄SiW₁₂O₄₀. The black block crystals of 2 (yield: 43% based on Cu) were successfully isolated. Elemental analysis: Anal. calcd for C₁₆H₁₈Cu₁₀N₂₄O₄₀SiW₁₂ (4056.21): C 4.74, H 0.45 and N 8.26%; Found C 4.71, H 0.49 and N 8.21%. IR (KBr pellet, cm⁻¹): 3434 (*m*), 3104 (*w*), 1484 (*m*), 1284 (*m*), 1164 (*m*), 929 (*m*), 887 (*s*), 792 (*vs*), 653 (s), 530 (*m*).

X-ray Crystallographic Measurements. Crystallographic data for 1 and 2 were collected on the Bruker SMART-CCD diffractmeter with Mo-K α radiation (λ =

0.71073 Å) at room temperature. The structures of **1** and **2** were resolved and refined by the direct method and refined full-matrix last squares on F^2 through the *SHELXTL* and *WINGX* software package.¹ All non-hydrogen atoms were refined anostropically and the some ADP and NDP error atoms in **1** and **2** were refined through the ISOR, DELU and SIMU command. The crystal data and selected bond lengths and angles of **1** and **2** are listed in Tables S2-S4 (Supporting information). The CCDC reference numbers of **1** and **2** are 1515264 and 1515265, respectively.

The **Battery** analyses. mixture of the samples $(1/2/(NBu_4)_3[PW_{12}O_{40}]/(NBu_4)_4[SiW_{12}O_{40}]),$ Super-P and carbon polyvinylidene fluoride (PVDF) at a weight ratio 7:2:1 was passed on the pure Cu foil and followed by drying in vacuum at 50°C for 24 h. The loading mass of electroactive materials in electrode slurry is $\sim 2 \text{ mg} \cdot \text{cm}^{-2}$. The testing coin cells were assembled in an argon-filled glovebox with the working electrode asfabricated, metallic lithium foil as the counter electrode, and 1.0 M LiPF₆ in ethylene carbonate/diethyl carbonate (1:1 v/v) as the electrolyte.

References

 [1] (a) G. M. Sheldrick, SHELX-97, Program for Crystal Structure Refinement, University of Göttingen, Germany. 1997; (b) G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Solution, University of Göttingen, Germany. 1997.

Table S1. Structural information of POMs and Cu ions and asymmetric unit of compounds 1 and 2.

* Htrz = trz-I and H₃trz= trz-II, trz = 1,2,4-triazole

Figure S1. Representation of the $[Cu_{12}(trz)_8]^{4+}$ metallmacrocycles generated by the subunit A subunits B copper-carbon bonds in compounds 1 and 2.

Figure S2. Ball/stick and topology representation of each $[Cu_{12}(trz)_8]^{4+}$ metallmacrocycles connecting the surrounding five $[Cu_{12}(trz)_8]^{4+}$ metallmacrocycles to construct the 3D metal-organic frameworks *via* the Cu2-Cu2 interaction.

Figure S3. Combined ball-stick and topological representation of the POM clusters inserted into the 3D metal-organic carbene frameworks *via* the Cu-O interaction compound 1 and 2.

Figure S4. The Combined ball-stick representation of (a) each POM clusters surrounded by six $[Cu_{12}(trz)_8]^{4+}$ metallmacrocycles and (b) each $[Cu_{12}(trz)_8]^{4+}$ metallmacrocycles also surrounded by six POM clusters.

Figure S5. The charge-discharge curves of (a) $(NBu_4)_3[PW_{12}O_{40}]$ and (b) $(NBu_4)_4[SiW_{12}O_{40}]$ anodes during the initial two cycles at a current density100 mA·g⁻¹. (c) The discharge capacity and the coulombic efficiency of $(NBu_4)_3[PW_{12}O_{40}]$ and $(NBu_4)_4[SiW_{12}O_{40}]$ anodes at a current density 100 mA·g⁻¹; (d) Rate performance of $(NBu_4)_3[PW_{12}O_{40}]$ and $(NBu_4)_4[SiW_{12}O_{40}]$ anodes at current densities of 100 mA·g⁻¹ to 1 A·g⁻¹.

Figure S6. The TG curve of (a) **1** and (d) **2**; the simulative (red), experimental (room temperature, black) and experimental (heated, blue) PXRD patterns for (b) **1** and (e) **2**; the room temperature (black) and heated (red) IR spectra of (c) **1** and (f) **2**, respectively.

Compounds	Compound 1	Compound 2
Chemical formula	$C_{16}H_{17}Cu_{10}N_{24}O_{40}PW_{12}$	$C_{16}H_{18}Cu_{10}N_{24}O_{40}SiW_{12}$
CCDC no.	1515264	1515265
Formula weight	4058.08	4056.21
Temperature (K)	296(2)	296(2)
Wavelength (Å)	0.71073	0.71073
Crystal system	tetragonal	tetragonal
Space group	I41/amd	I41/amd
a(Å)	21.0740(19)	21.0434(8)
b(Å)	21.0740(19)	21.0434(8)
c(Å)	12.766(2)	12.7594(9)
α(°)	90	90
β(°)	90	90
γ(°)	90	90
V(Å ³) / Z	5669.6(14)/4	5650.2(6)/4
Density (g·cm ⁻³)	4.744	4.756
Abs coeff. (mm ⁻¹)	30.210	30.224
F(000)	7140.0	7136.0
Data collect θ range	1.87-25.00 °	1.867 - 25.000°
Reflns collected	13238	13568
Independent refins	1334	1327
Rint	0.0636	0.0356
Data/restraints/parameters	1334/24/95	1327/ 0/ 131
Goodness-of-fit on F ²	1.116	1.162
Final R indices $[I > 2\delta(I)]$	$R_1 = 0.0414, wR_2 = 0.1070$	$R_1 = 0.0221, wR_2 = 0.0575$
R indices (all data)	$R_1 = 0.0501, wR_2 = 0.1176$	$R_1 = 0.0235, wR_2 = 0.0581$
Largest diff. peak and hole(e.Å-3)	12.801 and -2.354	3.386 and -1.167

 Table S2. Crystallographic data and structural refinements for 1 and 2.

 Table S3. Bond lengths [Å] and angles [°] for compound 1.

Compound 1				
Bonds	Lengths	Bonds	Lengths	
C(1)-Cu(2)	1.885(10)	O(7)-W(2)#2	2.424(6)	
N(1)-Cu(2)	1.901(11)	O(7)-W(2)	2.424(6)	
N(2)-Cu(1)	1.968(14)	O(7)-W(1)	2.428(6)	
O(2)-W(2)	1.914(8)	P(1)-O(7)#4	1.546(10)	
O(2)-W(1)	1.934(8)	P(1)-O(7)#5	1.546(9)	

O(3)-W(2)#3	1.914(8)	P(1)-O(7)#3	1.546(10)
O(3)-W(1)	1.924(8)	O(1)-W(1)	1.687(6)
O(5)-W(2)	1.718(6)	O(4)-W(2)#6	1.908(6)
O(6)-W(2)#2	1.912(7)	O(4)-W(2)	1.908(6)
O(6)-W(2)	1.912(7)	Cu(1)-N(2)#1	1.968(14)
O(7)-P(1)	1.546	Cu(2)-Cu(2)#7	3.002(4)
W(1)-O(2)#2	1.934(8)	W(1)-O(3)#2	1.924(8)
Bonds	Angles	Bonds	Angles
O(7)#4-P(1)-O(7)#5	109.7(9)	O(3)#2-W(1)-O(7)	83.6(3)
O(7)#4-P(1)-O(7)	109.7(3)	O(2)#2-W(1)-O(7)	72.9(3)
O(7)#5-P(1)-O(7)	109.1(2)	O(2)-W(1)-O(7)	72.9(3)
O(7)#4-P(1)-O(7)#3	109.1(7)	O(5)-W(2)-O(4)	101.3(3)
O(7)#5-P(1)-O(7)#3	109.7(9)	O(5)-W(2)-O(6)	102.8(3)
O(7)-P(1)-O(7)#3	109.7(3)	O(4)-W(2)-O(6)	88.7(3)
N(2)#1-Cu(1)-N(2)	177.7(9)	O(5)-W(2)-O(3)#3	101.3(3)
C(1)-Cu(2)-N(1)	171.9(5)	O(4)-W(2)-O(3)#3	85.5(3)
C(1)-Cu(2)-Cu(2)#7	91.7(3)	O(6)-W(2)-O(3)#3	155.9(3)
N(1)-Cu(2)-Cu(2)#7	93.1(4)	O(5)-W(2)-O(2)	101.5(3)
O(1)-W(1)-O(3)	102.2(3)	O(4)-W(2)-O(2)	157.0(3)
O(1)-W(1)-O(3)#2	102.2(3)	O(6)-W(2)-O(2)	88.6(3)
O(3)-W(1)-O(3)#2	86.7(5)	O(3)#3-W(2)-O(2)	87.7(4)
O(1)-W(1)-O(2)#2	101.5(3)	O(5)-W(2)-O(7)	173.0(4)
O(3)-W(1)-O(2)#2	156.3(4)	O(4)-W(2)-O(7)	84.2(2)
O(3)#2-W(1)-O(2)#2	88.0(4)	O(6)-W(2)-O(7)	72.7(2)
O(1)-W(1)-O(2)	101.5(3)	O(3)#3-W(2)-O(7)	83.4(3)
O(3)-W(1)-O(2)	88.0(4)	O(2)-W(2)-O(7)	73.2(3)
O(3)#2-W(1)-O(2)	156.3(4)	O(1)-W(1)-O(7)	172.0(3)
O(2)#2-W(1)-O(2)	87.6(5)	O(3)-W(1)-O(7)	83.6(3)

#1 y+1/4,x-1/4,-z+1/4; #2 -x+1,y,z; #3 -y+3/4,-x+3/4,-z+5/4; #4 y+1/4,x-1/4,-z+5/4; #5 -x+1,-y+1/2,z; #6 x,-y+1/2,z; #7 x,-y,-z

Table S4. Bond lengths [Å] and angles [°] for compound 2.

Compound 2			
Bonds	Lengths	Bonds	Lengths
C(1)-Cu(1)	1.883(7)	O(5)-Si(1)	1.629(7)
N(1)-Cu(1)	1.890(6)	O(5)-W(1)	2.340(5)
N(4)-Cu(2)	1.967(9)	O(5)-W(1)#5	2.340(5)
O(2)-W(1)#4	1.9081(17)	O(5)-W(2)	2.354(7)
O(2)-W(1)	1.9081(17)	O(6)-W(1)	1.911(5)

O(3)-W(2)	1.701(8)	O(6)-W(2)#6	1.929(5)
O(4)-W(1)	1.921(5)	O(7)-W(1)	1.717(5)
O(4)-W(2)	1.939(5)	O(10)-W(1)	1.910(3)
Si(1)-O(5)#8	1.629(7)	O(10)-W(1)#5	1.910(3)
Cu(1)-Cu(1)#2	2.996(2)	Si(1)-O(5)#6	1.629(7)
Cu(2)-N(4)#9	1.967(9)	Si(1)-O(5)#7	1.629(7)
W(2)-O(6)#6	1.929(5)	W(2)-O(4)#5	1.939(5)
Bonds	Angles	Bonds	Angles
O(5)-Si(1)-O(5)#6	109.9(2)	O(7)-W(1)-O(4)	99.4(2)
O(5)-Si(1)-O(5)#7	108.5(5)	O(2)-W(1)-O(4)	159.0(3)
O(5)#6-Si(1)-O(5)#7	109.9(2)	O(10)-W(1)-O(4)	89.9(3)
O(5)-Si(1)-O(5)#8	109.9(2)	O(6)-W(1)-O(4)	87.6(2)
O(5)#6-Si(1)-O(5)#8	108.5(5)	O(7)-W(1)-O(5)	172.0(2)
O(5)#7-Si(1)-O(5)#8	109.9(2)	O(2)-W(1)-O(5)	85.1(3)
C(1)-Cu(1)-N(1)	171.6(3)	O(10)-W(1)-O(5)	73.7(2)
C(1)-Cu(1)-Cu(1)#2	91.4(2)	O(6)-W(1)-O(5)	84.36(19)
N(1)-Cu(1)-Cu(1)#2	93.1(2)	O(4)-W(1)-O(5)	74.5(2)
N(4)-Cu(2)-N(4)#9	177.7(5)	O(3)-W(2)-O(6)#6	100.9(2)
O(7)-W(1)-O(2)	101.4(3)	O(3)-W(2)-O(6)#10	100.9(2)
O(7)-W(1)-O(10)	101.6(3)	O(6)#6-W(2)-O(6)#10	85.9(3)
O(2)-W(1)-O(10)	89.0(3)	O(3)-W(2)-O(4)	101.0(2)
O(7)-W(1)-O(6)	100.7(2)	O(6)#6-W(2)-O(4)	88.2(2)
O(2)-W(1)-O(6)	85.6(2)	O(6)#10-W(2)-O(4)	158.0(2)
O(10)-W(1)-O(6)	157.7(2)	O(3)-W(2)-O(4)#5	101.0(2)
O(6)#6-W(2)-O(5)	84.52(19)	O(6)#6-W(2)-O(4)#5	158.0(2)
O(6)#10-W(2)-O(5)	84.52(19)	O(6)#10-W(2)-O(4)#5	88.2(2)
O(4)-W(2)-O(5)	73.83(17)	O(4)-W(2)-O(4)#5	89.4(3)
O(4)#5-W(2)-O(5)	73.83(17)	O(3)-W(2)-O(5)	172.6(3)

 ^{#1 -}x,-y+1,-z; #2 x,-y+1,-z; #3 -y+3/4,-x+3/4,-z+1/4; #4 -x, y, z; #5 x,-y+1/2,z; #6 y-1/4,x+1/4,-z+3/4;

 #7 -x,-y+1/2,z; #8 -y+1/4,-x+1/4,-z+3/4; #9 y-1/4,x+1/4,-z-1/4; #10 y-1/4,-x+1/4,-z+3/4