Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting information

Graphene-Based Carbon Coated Tin Oxide as Lithium Ion Battery Anode Material with High Performance

Qiang Zhang, Qiuming Gao*, Weiwei Qian, Hang Zhang, Yanli Tan, Weiqian Tian,

Zeyu Li and Hong Xiao

Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry

of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices,

School of Chemistry, Beihang University, Beijing 100191, P. R. China.

*Corresponding author (Q.M. Gao, E-mail: <u>qmgao@buaa.edu.cn</u>)

Figure S1. TEM images of rGO/PC/SnO₂ (a) and rGO/SnO₂ (b) samples, respectively. The carbon of rGO/PC/SnO₂ sample was indicated by the yellow arrows in (a). The interfaces between the crystallized SnO₂ particles of rGO/PC/SnO₂ (a) are filled with carbon, which can prevent the agglomeration of SnO₂ nanoparticles and limit their volume expansion during the circulation used as the LIB anode, thus greatly increasing the cyclic stability.

Figure S2. TEM image (a) and XRD patterns (b and c) of rGO/PC/SnO₂ electrode material measured after 150 cycles at 0.1 C. The Li_xSn alloy with the size of about 5-8 nm could be found (a). The typical XRD peaks of Li₁₃Sn₅ (PDF#29-0838; Hexagonal, *P*-3m1 (164)) and Li₅Sn₂ (PDF#29-0839; Hexagonal, *R*-3m (166)) could be observed (b). And the peaks corresponding to the (111) and (200) lattice planes of Li₂O (PDF#12-0254; Cubic, *F*m-3m (225)) could be found in the enlarged XRD patterns (c). The strong 20 peaks located at 44.50° and 51.90° (b) are corresponding to the Ni (011) and (200) lattice planes, since the active material is coated on the nickel foam.

As to the SnO_2 based sample, two steps of electrochemical reactions occurred in the discharging process: (i) the SnO_2 irreversibly reduced to metallic Sn and Li₂O and (ii) the reversible Li-Sn alloying reaction. The resultant small nanosized Li_xSn alloy including primary Li₁₃Sn₅ and Li₅Sn₂ is due to the coated carbon which can prevent the volume expansion and the detrimental aggregation of the Sn clusters, thereby ensuring that the electrode will not break and electrons and lithium ions can transport easily, thus leading to an excellent cyclic stability of the rGO/PC/SnO₂ electrode material when using as the LIB cathode.