One-Step Synthesis of Well-structured NiS@Ni₂P₂S₆ Nanosheets On Nickel Foam for Efficient Overall Water Splitting

Xiaoyan Zhang^{ab}, Shan Zhang^{ab}, Jing Li^{ab**} and Erkang Wang^{ab**}

^a State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of

Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China

^b University of Chinese Academy of Sciences, Beijing, 100049, China

*Corresponding author, Email: lijingce@ciac.ac.cn, Tel: +86-431-85262003

*Corresponding author, Email: ekwang@ciac.ac.cn, Tel: +86-431-85262003

KEYWORDS: One-step Synthesis, NiS@Ni₂P₂S₆/NF • Self-supported electrode • Water splitting

Figure S1. SEM image and the corresponding energy dispersive X-ray (EDX) elemental mapping of Ni, P and S for NiS@Ni₂P₂S₆/NF.

Figure S2. EDX spectrum of the NiS@Ni $_2P_2S_6$ /NF nanosheets.

Elements	Weight% (EDX)	Atomic% (EDX)	
Ni	47.72	33.15	
Р	8.06	10.61	
S	44.22	56.24	
Total	100	100	
Ni:S (NiS)	22.54:24.41 = 1:1.08		
Ni:P:S (Ni ₂ P_2S_6)	10.61:10.61:31.83 = 1:1:3		
NiS:Ni ₂ P ₂ S ₆	2.1:1		

Table S1. Element percentage of NiS@Ni $_2P_2S_6$ /NF and the relative molar percentageof NiS and Ni $_2P_2S_6$ obtained from EDX.

Figure S3. SEM images for (a-b) NiSP/NF, (d-e) NiPS/NF with different magnification. XRD patterns for (c) NiSP/NF and (f) NiPS/NF.

Figure S4. Polarization curves of NiSP/NF, NiPS/NF and NiS@Ni₂P₂S₆/NF for OER in 1.0 M KOH.

OER				
Catalyst	Current density (mA cm ⁻²)	Corresponding Overpotential (mV)	Ref	
NiS@Ni ₂ P ₂ S ₆ /NF	10	220	This work	
СоР	10	280	S1	
Co-P/NC	10	319	S2	
CP/CTs/Co-S	10	306	S3	
NiSe/NF	20	270	S4	
Co-P film	10	345	S5	
CoO _x @CN	10	260	S 6	
Ni ₃ S ₂ /NF	10	260	S 7	
CoP-MNA	10	290	S8	
porous MoO ₂	10	260	S9	
CuCoO NWs	25	270	S10	

Table S2. Comparison of OER performance in basic media for NiS@Ni $_2P_2S_6$ /NFwith other reported OER electrocatalysts.

Figure S5. The multi-current process of NiS@Ni₂P₂S₆/NF. The current density started at 50 mA cm⁻² and ended at 600 mA cm⁻², with an increment of 50 mA cm⁻² per 500 seconds with no iR correction.

HER				
Catalyst	Current density (mA cm ⁻²)	Correspondin g Overpotential (mV)	Ref	
NiS@Ni ₂ P ₂ S ₆ /NF	10	140	This work	
Co-P/NC	10	154	82	
CP/CTs/Co-S	10	190	S3	
CoO _x @AC	10	232	S5	
Ni ₃ S ₂ /NF	20	223	S7	
CoP/CC	10	209	S11	

Table S3. Comparison of HER performance in basic media for $NiS@Ni_2P_2S_6/NF$ with other HER electrocatalysts.

Water splitting					
Catalyst	Current density (mA cm ⁻²)	Correspondin g potential (V)	Ref		
NiS@Ni ₂ P ₂ S ₆ /NF	10	1.64	This work		
CP/CTs/Co-S	10	1.743	S3		
Ni ₃ S ₂ /NF	13	1.76	S7		
NiFe LDH	10	1.70	S12		
NiCo ₂ O ₄	10	1.65	S13		
ONPPGC/OCC	25	1.66	S14		

Table S4. Comparison of water splitting performance in basic media forNiS@Ni2P2S6/NF with other reported bifunctional electrocatalysts.

References

1. Zhang, G.; Wang, G.; Liu, Y.; Liu, H.; Qu, J.; Li, J., Highly Active and Stable Catalysts of Phytic Acid-Derivative Transition Metal Phosphides for Full Water Splitting. *J. Am. Chem. Soc.* **2016**, *138*, 14686-14693.

2. You, B.; Jiang, N.; Sheng, M.; Gul, S.; Yano, J.; Sun, Y., High-Performance Overall Water Splitting Electrocatalysts Derived from Cobalt-Based Metal–Organic Frameworks. *Chem. Mater.* **2015**, *27*, 7636-7642.

3. Wang, J.; Zhong, H. X.; Wang, Z. L.; Meng, F. L.; Zhang, X. B., Integrated Three-Dimensional Carbon Paper/Carbon Tubes/Cobalt-Sulfide Sheets as an Efficient Electrode for Overall Water Splitting. *ACS Nano* **2016**, *10*, 2342-2348.

4. Tang, C.; Cheng, N.; Pu, Z.; Xing, W.; Sun, X., NiSe Nanowire Film Supported on Nickel Foam: An Efficient and Stable 3D Bifunctional Electrode for Full Water Splitting. *Angew. Chem. Int. Ed.* **2015**, *54*, 9351-9355.

5. Jiang, N.; You, B.; Sheng, M.; Sun, Y., Electrodeposited cobalt-phosphorousderived films as competent bifunctional catalysts for overall water splitting. *Angew. Chem. Int. Ed.* **2015,** *54*, 6251-6254.

6. Jin, H.; Wang, J.; Su, D.; Wei, Z.; Pang, Z.; Wang, Y., In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. *J. Am. Chem. Soc.* **2015**, *137*, 2688-2694.

7. Feng, L.; Yu, G.; Wu, Y.; Li, G.; Li, H.; Sun, Y.; Asefa, T.; Chen, W.; Zou, X., High-index faceted Ni₃S₂ nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. *J. Am. Chem. Soc.* **2015**, *137*, 14023-14026. 8. Zhu, Y.-P.; Liu, Y.-P.; Ren, T.-Z.; Yuan, Z.-Y., Self-Supported Cobalt Phosphide Mesoporous Nanorod Arrays: A Flexible and Bifunctional Electrode for Highly Active Electrocatalytic Water Reduction and Oxidation. *Adv. Funct. Mater.* **2015**, *25*, 7337-7347.

 Jin, Y.; Wang, H.; Li, J.; Yue, X.; Han, Y.; Shen, P. K.; Cui, Y., Porous MoO₂ Nanosheets as Non-noble Bifunctional Electrocatalysts for Overall Water Splitting. *Adv. Mater.* 2016, 28, 3785-3790.

10. Kuang, M.; Han, P.; Wang, Q.; Li, J.; Zheng, G., CuCo Hybrid Oxides as Bifunctional Electrocatalyst for Efficient Water Splitting. *Adv. Funct. Mater.* **2016**, *26*, 8555-8561.

11. Tian, J.; Liu, Q.; Asiri, A. M.; Sun, X., Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14. *J. Am. Chem. Soc.* **2014**, *136*, 7587-7590.

Luo J.; Im J.-H.; Mayer M.; Schreier M.; Nazeeruddin M.; Park N.-G.; Tilley S.;
 Fan H.; Gr-tzel M., *Science* 2014, *345*,1593–1596

Gao, X.; Zhang, H.; Li, Q.; Yu, X.; Hong, Z.; Zhang, X.; Liang, C.; Lin, Z.,
 Hierarchical NiCo₂O₄ Hollow Microcuboids as Bifunctional Electrocatalysts for
 Overall Water-Splitting. *Angew. Chem. Int. Ed.* 2016, *55*, 6290-6294.

14. Lai, J.; Li, S.; Wu, F.; Saqib, M.; Luque, R.; Xu, G., Unprecedented metal-free
3D porous carbonaceous electrodes for full water splitting. *Energy Environ. Sci.* 2016, 9, 1210-1214.